Spaces:
Runtime error
Runtime error
File size: 6,050 Bytes
fe0a782 db91191 fe0a782 06b697a 3515ac0 fe0a782 db91191 fe0a782 e05dcc6 fe0a782 ca3199a 76004d8 fe0a782 b4b6165 fe0a782 8d4ff63 fe0a782 8d4ff63 fe0a782 76004d8 f2a066a e2d8d15 f7e1795 fe0a782 7e7d205 fe0a782 95b11af fe0a782 c5cf7e9 fe0a782 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import json # to work with JSON
import threading # to allow streaming response
import time # to pave the deliver of the message
import datasets # for loading RAG database
import faiss # to create a search index
import gradio # for the interface
import numpy # to work with vectors
import pandas # to work with pandas
import sentence_transformers # to load an embedding model
import spaces # for GPU
import transformers # to load an LLM
# Constants
GREETING = (
"Howdy! I'm an AI agent that uses a [retrieval-augmented generation]("
"https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about published at [ASME IDETC](https://asmedigitalcollection.asme.org/IDETC-CIE). And the best part is that I always cite my sources! What"
" can I tell you about today?"
)
EXAMPLE_QUERIES = [
"What's the difference between a markov chain and a hidden markov model?",
"What is axiomatic design?",
"What is known about different modes for human-AI teaming?",
]
EMBEDDING_MODEL_NAME = "allenai-specter"
LLM_MODEL_NAME = "Qwen/Qwen2-7B-Instruct"
# Load the dataset and convert to pandas
data = datasets.load_dataset("ccm/rag-idetc")["train"].to_pandas()
# Load the model for later use in embeddings
model = sentence_transformers.SentenceTransformer(EMBEDDING_MODEL_NAME)
# Create an LLM pipeline that we can send queries to
tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
streamer = transformers.TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True
)
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME, torch_dtype="auto", device_map="auto"
)
# Create a FAISS index for fast similarity search
metric = faiss.METRIC_INNER_PRODUCT
vectors = numpy.stack(data["embedding"].tolist(), axis=0).astype('float32')
index = faiss.IndexFlatL2(len(data["embedding"][0]))
index.metric_type = metric
faiss.normalize_L2(vectors)
index.train(vectors)
index.add(vectors)
def preprocess(query: str, k: int) -> tuple[str, str]:
"""
Searches the dataset for the top k most relevant papers to the query and returns a prompt and references
Args:
query (str): The user's query
k (int): The number of results to return
Returns:
tuple[str, str]: A tuple containing the prompt and references
"""
encoded_query = numpy.expand_dims(model.encode(query), axis=0)
print(query, encoded_query)
faiss.normalize_L2(encoded_query)
D, I = index.search(encoded_query, k)
top_five = data.loc[I[0]]
prompt = (
"You are an AI assistant who delights in helping people learn about research from the IDETC Conference. Your main task is to provide an ANSWER to the USER_QUERY based on the RESEARCH_EXCERPTS. Your ANSWER should be concise.\n\n"
"RESEARCH_EXCERPTS:\n{{ABSTRACTS_GO_HERE}}\n\n"
"USER_GUERY:\n{{QUERY_GOES_HERE}}\n\n"
"ANSWER:\n"
)
references = []
research_abstracts = ""
for i in range(k):
title = top_five["title"].values[i]
id = top_five["id"].values[i]
url = "https://doi.org/10.1115/" + id
path = top_five["path"].values[i]
text = top_five["text"].values[i]
research_abstracts += str(i + i) + ". This excerpt is from: '" + title + "':\n" + text + "\n"
references.append(
"["
+ title.title()
+ "]("
+ url
+ ").\n"
)
prompt = prompt.replace("{{ABSTRACTS_GO_HERE}}", research_abstracts)
prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)
return prompt, "\n\n### References\n\n"+"\n".join([str(i+1)+". "+ref for i, ref in enumerate(list(set(references)))])
def postprocess(response: str, bypass_from_preprocessing: str) -> str:
"""
Applies a postprocessing step to the LLM's response before the user receives it
Args:
response (str): The LLM's response
bypass_from_preprocessing (str): The bypass variable from the preprocessing step
Returns:
str: The postprocessed response
"""
return response + bypass_from_preprocessing
@spaces.GPU
def reply(message: str, history: list[str]) -> str:
"""
This function is responsible for crafting a response
Args:
message (str): The user's message
history (list[str]): The conversation history
Returns:
str: The AI's response
"""
# Apply preprocessing
message, bypass = preprocess(message, 10)
# This is some handling that is applied to the history variable to put it in a good format
history_transformer_format = [
{"role": role, "content": message_pair[idx]}
for message_pair in history
for idx, role in enumerate(["user", "assistant"])
if message_pair[idx] is not None
] + [{"role": "user", "content": message}]
# Stream a response from pipe
text = tokenizer.apply_chat_template(
history_transformer_format, tokenize=False, add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != "<":
partial_message += new_token
time.sleep(0.05)
yield partial_message
yield partial_message + bypass
# Create and run the gradio interface
gradio.ChatInterface(
reply,
examples=EXAMPLE_QUERIES,
chatbot=gradio.Chatbot(
avatar_images=[None, "https://event.asme.org/Events/media/library/images/IDETC-CIE/IDETC-Logo-Announcements.png?ext=.png"],
show_label=False,
show_share_button=False,
show_copy_button=False,
value=[[None, GREETING]],
height="60vh",
bubble_full_width=False,
),
retry_btn=None,
undo_btn=None,
clear_btn=None,
).launch(debug=True)
|