Spaces:
Runtime error
Runtime error
import json # to work with JSON | |
import threading # to allow streaming response | |
import time # to pave the deliver of the message | |
import datasets # for loading RAG database | |
import faiss # to create a search index | |
import gradio # for the interface | |
import numpy # to work with vectors | |
import pandas # to work with pandas | |
import sentence_transformers # to load an embedding model | |
import spaces # for GPU | |
import transformers # to load an LLM | |
# Constants | |
GREETING = ( | |
"Howdy! I'm an AI agent that uses a [retrieval-augmented generation](" | |
"https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about published at [ASME IDETC](https://asmedigitalcollection.asme.org/IDETC-CIE). And the best part is that I always cite my sources! What" | |
" can I tell you about today?" | |
) | |
EXAMPLE_QUERIES = [ | |
"What's the difference between a markov chain and a hidden markov model?", | |
"What is axiomatic design?", | |
"What is known about different modes for human-AI teaming?", | |
] | |
EMBEDDING_MODEL_NAME = "allenai-specter" | |
LLM_MODEL_NAME = "Qwen/Qwen2-7B-Instruct" | |
# Load the dataset and convert to pandas | |
data = datasets.load_dataset("ccm/rag-idetc")["train"].to_pandas() | |
# Load the model for later use in embeddings | |
model = sentence_transformers.SentenceTransformer(EMBEDDING_MODEL_NAME) | |
# Create an LLM pipeline that we can send queries to | |
tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME) | |
streamer = transformers.TextIteratorStreamer( | |
tokenizer, skip_prompt=True, skip_special_tokens=True | |
) | |
chatmodel = transformers.AutoModelForCausalLM.from_pretrained( | |
LLM_MODEL_NAME, torch_dtype="auto", device_map="auto" | |
) | |
# Create a FAISS index for fast similarity search | |
metric = faiss.METRIC_INNER_PRODUCT | |
vectors = numpy.stack(data["embedding"].tolist(), axis=0).astype('float32') | |
index = faiss.IndexFlatL2(len(data["embedding"][0])) | |
index.metric_type = metric | |
faiss.normalize_L2(vectors) | |
index.train(vectors) | |
index.add(vectors) | |
def preprocess(query: str, k: int) -> tuple[str, str]: | |
""" | |
Searches the dataset for the top k most relevant papers to the query and returns a prompt and references | |
Args: | |
query (str): The user's query | |
k (int): The number of results to return | |
Returns: | |
tuple[str, str]: A tuple containing the prompt and references | |
""" | |
encoded_query = numpy.expand_dims(model.encode(query), axis=0) | |
print(query, encoded_query) | |
faiss.normalize_L2(encoded_query) | |
D, I = index.search(encoded_query, k) | |
top_five = data.loc[I[0]] | |
prompt = ( | |
"You are an AI assistant who delights in helping people learn about research from the IDETC Conference. Your main task is to provide an ANSWER to the USER_QUERY based on the RESEARCH_EXCERPTS. Your ANSWER should be concise.\n\n" | |
"RESEARCH_EXCERPTS:\n{{ABSTRACTS_GO_HERE}}\n\n" | |
"USER_GUERY:\n{{QUERY_GOES_HERE}}\n\n" | |
"ANSWER:\n" | |
) | |
references = [] | |
research_abstracts = "" | |
for i in range(k): | |
title = top_five["title"].values[i] | |
id = top_five["id"].values[i] | |
url = "https://doi.org/10.1115/" + id | |
path = top_five["path"].values[i] | |
text = top_five["text"].values[i] | |
research_abstracts += str(i + i) + ". This excerpt is from: '" + title + "':\n" + text + "\n" | |
references.append( | |
"[" | |
+ title.title() | |
+ "](" | |
+ url | |
+ ").\n" | |
) | |
prompt = prompt.replace("{{ABSTRACTS_GO_HERE}}", research_abstracts) | |
prompt = prompt.replace("{{QUERY_GOES_HERE}}", query) | |
return prompt, "\n\n### References\n\n"+"\n".join([str(i+1)+". "+ref for i, ref in enumerate(list(set(references)))]) | |
def postprocess(response: str, bypass_from_preprocessing: str) -> str: | |
""" | |
Applies a postprocessing step to the LLM's response before the user receives it | |
Args: | |
response (str): The LLM's response | |
bypass_from_preprocessing (str): The bypass variable from the preprocessing step | |
Returns: | |
str: The postprocessed response | |
""" | |
return response + bypass_from_preprocessing | |
def reply(message: str, history: list[str]) -> str: | |
""" | |
This function is responsible for crafting a response | |
Args: | |
message (str): The user's message | |
history (list[str]): The conversation history | |
Returns: | |
str: The AI's response | |
""" | |
# Apply preprocessing | |
message, bypass = preprocess(message, 10) | |
# This is some handling that is applied to the history variable to put it in a good format | |
history_transformer_format = [ | |
{"role": role, "content": message_pair[idx]} | |
for message_pair in history | |
for idx, role in enumerate(["user", "assistant"]) | |
if message_pair[idx] is not None | |
] + [{"role": "user", "content": message}] | |
# Stream a response from pipe | |
text = tokenizer.apply_chat_template( | |
history_transformer_format, tokenize=False, add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0") | |
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512) | |
t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != "<": | |
partial_message += new_token | |
time.sleep(0.05) | |
yield partial_message | |
yield partial_message + bypass | |
# Create and run the gradio interface | |
gradio.ChatInterface( | |
reply, | |
examples=EXAMPLE_QUERIES, | |
chatbot=gradio.Chatbot( | |
avatar_images=[None, "https://event.asme.org/Events/media/library/images/IDETC-CIE/IDETC-Logo-Announcements.png?ext=.png"], | |
show_label=False, | |
show_share_button=False, | |
show_copy_button=False, | |
value=[[None, GREETING]], | |
height="60vh", | |
bubble_full_width=False, | |
), | |
retry_btn=None, | |
undo_btn=None, | |
clear_btn=None, | |
).launch(debug=True) | |