Guzheng_Tech99 / app.py
admin
upd cite
1358155
raw
history blame
5.99 kB
import os
import torch
import librosa
import warnings
import numpy as np
import pandas as pd
import gradio as gr
import librosa.display
from model import EvalNet, t_EvalNet
from utils import get_modelist, find_files, embed, MODEL_DIR
TRANSLATE = {
"chanyin": "Vibrato", # 颤音
"boxian": "Plucks", # 拨弦
"shanghua": "Upward Portamento", # 上滑音
"xiahua": "Downward Portamento", # 下滑音
"huazhi/guazou/lianmo/liantuo": "Glissando", # 花指\刮奏\连抹\连托
"yaozhi": "Tremolo", # 摇指
"dianyin": "Point Note", # 点音
}
CLASSES = list(TRANSLATE.keys())
TEMP_DIR = "./__pycache__/tmp"
SAMPLE_RATE = 44100
HOP_LENGTH = 512
TIME_LENGTH = 3
def logMel(y, sr=SAMPLE_RATE):
mel = librosa.feature.melspectrogram(
y=y,
sr=sr,
hop_length=HOP_LENGTH,
fmin=27.5,
)
return librosa.power_to_db(mel, ref=np.max)
def logCqt(y, sr=SAMPLE_RATE):
cqt = librosa.cqt(
y,
sr=sr,
hop_length=HOP_LENGTH,
fmin=27.5,
n_bins=88,
bins_per_octave=12,
)
return ((1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(cqt), ref=np.max)) + 1.0
def logChroma(y, sr=SAMPLE_RATE):
chroma = librosa.feature.chroma_stft(
y=y,
sr=sr,
hop_length=HOP_LENGTH,
)
return (
(1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(chroma), ref=np.max)
) + 1.0
def RoW_norm(data):
common_sum = 0
square_sum = 0
tfle = 0
for i in range(len(data)):
tfle += (data[i].sum(-1).sum(0) != 0).astype("float").sum()
common_sum += data[i].sum(-1).sum(-1)
square_sum += (data[i] ** 2).sum(-1).sum(-1)
common_avg = common_sum / tfle
square_avg = square_sum / tfle
std = np.sqrt(square_avg - common_avg**2)
return common_avg, std
def norm(data):
size = data.shape
avg, std = RoW_norm(data)
avg = np.tile(avg.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
std = np.tile(std.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
return (data - avg) / std
def chunk_data(f):
x = []
xdata = np.transpose(f)
s = SAMPLE_RATE * TIME_LENGTH // HOP_LENGTH
length = int(np.ceil((int(len(xdata) / s) + 1) * s))
app = np.zeros((length - xdata.shape[0], xdata.shape[1]))
xdata = np.concatenate((xdata, app), 0)
for i in range(int(length / s)):
data = xdata[int(i * s) : int(i * s + s)]
x.append(np.transpose(data[:s, :]))
return np.array(x)
def load(audio_path: str, converto="mel"):
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
spec = eval("log%s(y, sr)" % converto.capitalize())
x_spec = chunk_data(spec)
Xtr_spec = np.expand_dims(x_spec, axis=3)
return list(norm(Xtr_spec))
def format_second(seconds):
integer_part = int(seconds)
decimal_part = round(seconds - integer_part, 3)
hours, remainder = divmod(integer_part, 3600)
minutes, seconds = divmod(remainder, 60)
return f"{hours:02}:{minutes:02}:{seconds:02}.{decimal_part:.3f}"
def infer(audio_path: str, log_name: str):
if not audio_path:
return "Please input an audio!", None
backbone = "_".join(log_name.split("_")[:-1])
spec = log_name.split("_")[-1]
try:
input = load(audio_path, converto=spec)
dur = librosa.get_duration(path=audio_path)
frames_per_3s = input[0].shape[1]
if "vit" in backbone or "swin" in backbone:
eval_net = t_EvalNet(
backbone,
len(TRANSLATE),
input[0].shape[1],
weight_path=f"{MODEL_DIR}/{log_name}.pt",
)
else:
eval_net = EvalNet(
backbone,
len(TRANSLATE),
input[0].shape[1],
weight_path=f"{MODEL_DIR}/{log_name}.pt",
)
input_size = eval_net.get_input_size()
embeded_input = embed(input, input_size)
output = list(eval_net.forward(embeded_input))
except Exception as e:
return f"{e}", None
index = 0
outputs = []
for y in output:
preds = list(y.T)
for pred in preds:
start = index * TIME_LENGTH / frames_per_3s
if start > dur:
break
to = (index + 1) * TIME_LENGTH / frames_per_3s
outputs.append(
{
"Frame": f"{format_second(start)} - {format_second(to)}",
"Tech": TRANSLATE[CLASSES[torch.argmax(pred).item()]],
}
)
index += 1
return os.path.basename(audio_path), pd.DataFrame(outputs)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
models = get_modelist(assign_model="VGG19_mel")
examples = []
example_wavs = find_files()
for wav in example_wavs:
examples.append([wav, models[0]])
with gr.Blocks() as demo:
gr.Interface(
fn=infer,
inputs=[
gr.Audio(label="Upload audio", type="filepath"),
gr.Dropdown(choices=models, label="Select a model", value=models[0]),
],
outputs=[
gr.Textbox(label="Audio filename", show_copy_button=True),
gr.Dataframe(label="Frame-level guzheng playing technique detection"),
],
examples=examples,
cache_examples=False,
flagging_mode="never",
title="It is suggested that the recording time should not be too long",
)
gr.Markdown(
"""
# Cite
```bibtex
@article{Zhou-2025,
title = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research},
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
journal = {Transactions of the International Society for Music Information Retrieval},
year = {2025}
}
```"""
)
demo.launch()