music_genre / app.py
admin
sync
58ca3ce
raw
history blame
7.73 kB
import os
import sys
import torch
import random
import shutil
import librosa
import warnings
import subprocess
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from utils import get_modelist, find_mp3_files, download
from collections import Counter
from model import EvalNet
from PIL import Image
TRANSLATE = {
"Symphony": "交响乐 Symphony",
"Opera": "戏曲 Opera",
"Solo": "独奏 Solo",
"Chamber": "室内乐 Chamber",
"Pop_vocal_ballad": "芭乐 Pop vocal ballad",
"Adult_contemporary": "成人时代 Adult contemporary",
"Teen_pop": "青少年流行 Teen pop",
"Contemporary_dance_pop": "当代流行舞曲 Contemporary dance pop",
"Dance_pop": "流行舞曲 Dance pop",
"Classic_indie_pop": "经典独立流行 Classic indie pop",
"Chamber_cabaret_and_art_pop": "室内卡巴莱与艺术流行乐 Chamber cabaret & art pop",
"Soul_or_r_and_b": "灵魂乐或节奏布鲁斯 Soul / R&B",
"Adult_alternative_rock": "成人另类摇滚 Adult alternative rock",
"Uplifting_anthemic_rock": "迷幻民族摇滚 Uplifting anthemic rock",
"Soft_rock": "慢摇滚 Soft rock",
"Acoustic_pop": "原声流行 Acoustic pop",
}
CLASSES = list(TRANSLATE.keys())
def most_common_element(input_list):
counter = Counter(input_list)
mce, _ = counter.most_common(1)[0]
return mce
def mp3_to_mel(audio_path: str, width=11.4):
os.makedirs("./flagged", exist_ok=True)
try:
y, sr = librosa.load(audio_path)
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_mel_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_mel_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"./flagged/mel_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def mp3_to_cqt(audio_path: str, width=11.4):
os.makedirs("./flagged", exist_ok=True)
try:
y, sr = librosa.load(audio_path)
cqt_spec = librosa.cqt(y=y, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_cqt_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_cqt_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"./flagged/cqt_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def mp3_to_chroma(audio_path: str, width=11.4):
os.makedirs("./flagged", exist_ok=True)
try:
y, sr = librosa.load(audio_path)
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_chroma_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_chroma_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"./flagged/chroma_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
except Exception as e:
print(f"Error converting {audio_path} : {e}")
def embed_img(img_path, input_size=224):
transform = transforms.Compose(
[
transforms.Resize([input_size, input_size]),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
img = Image.open(img_path).convert("RGB")
return transform(img).unsqueeze(0)
def inference(mp3_path, log_name: str, folder_path="./flagged"):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not mp3_path:
return None, "请输入音频 Please input an audio!"
network = EvalNet(log_name)
spec = log_name.split("_")[-1]
eval("mp3_to_%s" % spec)(mp3_path)
outputs = []
all_files = os.listdir(folder_path)
for file_name in all_files:
if file_name.lower().endswith(".jpg"):
file_path = os.path.join(folder_path, file_name)
input = embed_img(file_path)
output: torch.Tensor = network.model(input)
pred_id = torch.max(output.data, 1)[1]
outputs.append(int(pred_id))
max_count_item = most_common_element(outputs)
shutil.rmtree(folder_path)
return os.path.basename(mp3_path), TRANSLATE[CLASSES[max_count_item]]
if __name__ == "__main__":
warnings.filterwarnings("ignore")
ffmpeg = "ffmpeg-release-amd64-static"
if sys.platform.startswith("linux"):
if not os.path.exists(f"./{ffmpeg}.tar.xz"):
download(
f"https://www.modelscope.cn/studio/ccmusic-database/music_genre/resolve/master/{ffmpeg}.tar.xz"
)
folder_path = f"{os.getcwd()}/{ffmpeg}"
if not os.path.exists(folder_path):
subprocess.call(f"tar -xvf {ffmpeg}.tar.xz", shell=True)
os.environ["PATH"] = f"{folder_path}:{os.environ.get('PATH', '')}"
models = get_modelist()
examples = []
example_mp3s = find_mp3_files()
model_num = len(models)
for mp3 in example_mp3s:
examples.append([mp3, models[random.randint(0, model_num - 1)]])
with gr.Blocks() as demo:
gr.Interface(
fn=inference,
inputs=[
gr.Audio(label="上传MP3音频 Upload MP3", type="filepath"),
gr.Dropdown(
choices=models, label="选择模型 Select a model", value=models[6]
),
],
outputs=[
gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
gr.Textbox(label="流派识别 Genre recognition", show_copy_button=True),
],
examples=examples,
cache_examples=False,
allow_flagging="never",
title="建议录音时长保持在 15s 以内, 过长会影响识别效率<br>It is recommended to keep the duration of recording within 15s, too long will affect the recognition efficiency.",
)
gr.Markdown(
"""
# 引用 Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
month = {mar},
year = {2024},
publisher = {HuggingFace},
version = {1.2},
url = {https://huggingface.co/ccmusic-database}
}
```"""
)
demo.launch()