RvanB's picture
Add files from other repo
fbf7e95
raw
history blame
7.4 kB
import argparse
import concurrent.futures
import csv
import itertools
import time
import numpy as np
import pandas as pd
from more_itertools import chunked
import marcai.processing.comparisons as comps
import marcai.processing.normalizations as norms
from marcai.utils.parsing import load_records, record_dict
from multiprocessing import get_context
def multiprocess_pairs(
records_df,
pair_indices,
chunksize=50000,
processes=1,
):
# Create chunked iterator
pairs_chunked = chunked(pair_indices, chunksize)
# Create processing jobs
max_jobs = processes * 2
context = get_context("fork")
with concurrent.futures.ProcessPoolExecutor(
max_workers=processes, mp_context=context
) as executor:
futures = set()
done = set()
first_spawn = True
while futures or first_spawn:
if first_spawn:
spawn_count = max_jobs
first_spawn = False
else:
# Wait for a job to complete
done, futures = concurrent.futures.wait(
futures, return_when=concurrent.futures.FIRST_COMPLETED
)
spawn_count = max_jobs - len(futures)
for future in done:
# Get job's output
df = future.result()
# Yield output
yield df
# Spawn jobs
for _ in range(spawn_count):
pairs_chunk = next(pairs_chunked, None)
if pairs_chunk is None:
break
indices = np.array(pairs_chunk).astype(int)
left_indices = indices[:, 0]
right_indices = indices[:, 1]
left_records = records_df.iloc[left_indices].reset_index(drop=True)
right_records = records_df.iloc[right_indices].reset_index(drop=True)
futures.add(executor.submit(process, left_records, right_records))
def process(df0, df1):
normalize_fields = [
"author_names",
"corporate_names",
"meeting_names",
"publisher",
"title",
"title_a",
"title_b",
"title_c",
"title_p",
]
# Normalize text fields
for field in normalize_fields:
df0[field] = norms.lowercase(df0[field])
df1[field] = norms.lowercase(df1[field])
df0[field] = norms.remove_punctuation(df0[field])
df1[field] = norms.remove_punctuation(df1[field])
df0[field] = norms.remove_diacritics(df0[field])
df1[field] = norms.remove_diacritics(df1[field])
df0[field] = norms.normalize_whitespace(df0[field])
df1[field] = norms.normalize_whitespace(df1[field])
# Compare fields
result_df = pd.DataFrame()
result_df["id_0"] = df0["id"]
result_df["id_1"] = df1["id"]
result_df["raw_tokenset"] = comps.token_set_similarity(
df0["raw"], df1["raw"], null_value=0.5
)
# Token sort ratio
result_df["publisher"] = comps.token_sort_similarity(
df0["publisher"], df1["publisher"], null_value=0.5
)
author_names = comps.token_sort_similarity(
df0["author_names"], df1["author_names"], null_value=np.nan
)
corporate_names = comps.token_sort_similarity(
df0["corporate_names"], df1["corporate_names"], null_value=np.nan
)
meeting_names = comps.token_sort_similarity(
df0["meeting_names"], df1["meeting_names"], null_value=np.nan
)
authors = pd.concat([author_names, corporate_names, meeting_names], axis=1)
# Take max of author comparisons
result_df["author"] = comps.maximum(authors, null_value=0.5)
# Weighted title comparison
weights = {
"title_a": 1,
"raw": 0,
"title_p": 1
}
result_df["title_agg"] = comps.column_aggregate_similarity(
df0[weights.keys()], df1[weights.keys()], weights.values(), null_value=0
)
# Phonetic difference
result_df["title_phonetic"] = comps.phonetic_similarity(
df0["title"], df1["title"], null_value=0
)
# Length difference
result_df["title_length"] = comps.length_similarity(
df0["title"], df1["title"], null_value=0.5
)
# Token set similarity
result_df["title_tokenset"] = comps.token_set_similarity(
df0["title"], df1["title"], null_value=0
)
# Token sort ratio
result_df["title_tokensort"] = comps.token_sort_similarity(
df0["title"], df1["title"], null_value=0
)
# Levenshtein
result_df["title_levenshtein"] = comps.levenshtein_similarity(
df0["title"], df1["title"], null_value=0
)
# Jaro
result_df["title_jaro"] = comps.jaro_similarity(
df0["title"], df1["title"], null_value=0
)
# Jaro Winkler
result_df["title_jaro_winkler"] = comps.jaro_winkler_similarity(
df0["title"], df1["title"], null_value=0
)
# Pagination
result_df["pagination"] = comps.pagination_match(
df0["pagination"], df1["pagination"], null_value=0.5
)
# Dates
result_df["pub_date"] = comps.year_similarity(
df0["pub_date"], df1["pub_date"], null_value=0.5, exp_coeff=0.15
)
# Pub place
result_df["pub_place"] = comps.equal(
df0["pub_place"], df1["pub_place"], null_value=0.5
)
# CID/Label
result_df["cid"] = comps.equal(df0["cid"], df1["cid"], null_value=0.5)
return result_df
def parse_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
required = parser.add_argument_group("required arguments")
required.add_argument("-i", "--inputs", nargs="+", help="MARC files", required=True)
required.add_argument("-o", "--output", help="Output file", required=True)
parser.add_argument(
"-C",
"--chunksize",
type=int,
help="Number of comparisons per job",
default=50000,
)
parser.add_argument(
"-p", "--pair-indices", help="File containing indices of comparisons"
)
parser.add_argument(
"-P",
"--processes",
type=int,
help="Number of processes to run in parallel.",
default=1,
)
return parser.parse_args()
def main():
start = time.time()
args = parse_args()
# Load records
print("Loading records...")
records = []
for path in args.inputs:
records.extend([record_dict(r) for r in load_records(path)])
records_df = pd.DataFrame(records)
print(f"Loaded {len(records)} records.")
print("Processing records...")
# Process records
written = False
with open(args.pair_indices, "r") as indices_file:
reader = csv.reader(indices_file)
for df in multiprocess_pairs(
records_df, reader, args.chunksize, args.processes
):
if not written:
# Write header
df.to_csv(args.output, mode="w", header=True, index=False)
written = True
else:
# Write rows of df to output CSV
df.to_csv(args.output, mode="a", header=False, index=False)
end = time.time()
print(f"Processed {len(records)} records.")
print(f"Time elapsed: {end - start:.2f} seconds.")
if __name__ == "__main__":
main()