File size: 2,346 Bytes
c086c81 d33ebe2 18f7759 0e9a048 c086c81 18f7759 1203285 c086c81 5895838 ad1987c 290d982 c086c81 b236433 c086c81 290d982 b236433 290d982 c086c81 6d74074 c086c81 b236433 c086c81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import streamlit as st
import torch
from sentence_transformers import SentenceTransformer,util
#from transformers import pipeline
import pandas as pd
import numpy as np
# Load the pre-trained SentenceTransformer model
#pipeline = pipeline(task="Sentence Similarity", model="all-MiniLM-L6-v2")
model = SentenceTransformer('all-MiniLM-L6-v2')
sentence_embed = pd.read_csv('Reference_file_2 (1).csv')
#st.write(sentence_embed.head(5))
# Function to compute cosine similarity
def cosine_similarity(v1, v2):
"""Compute cosine similarity between two vectors."""
return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
# Backend function for mapping
def mapping_code(user_input):
emb1 = model.encode(user_input, convert_to_tensor=True).astype(float)
similarities = []
for sentence_emb in sentence_embed['embeds']:
sentence_emb = np.array(sentence_emb).astype(float)
similarity = cosine_similarity(sentence_emb, emb1)
similarities.append(similarity)
# Combine similarity scores with 'code' and 'description'
result = list(zip(sentence_embed['SBS Code'], sentence_embed['Long Description'], similarities))
# Sort results by similarity scores
result.sort(key=lambda x: x[2], reverse=True)
# Return top 5 entries with 'code', 'description', and 'similarity_score'
top_5_results = []
for i in range(5):
code, description, similarity_score = result[i]
top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score})
return top_5_results
# Streamlit frontend interface
def main():
st.title("CPT Description Mapping")
# Input text box for user input
user_input = st.text_input("Enter CPT description:")
# Button to trigger mapping
if st.button("Map"):
if user_input:
st.write("Please wait for a moment .... ")
# Call backend function to get mapping results
mapping_results = mapping_code(user_input)
# Display top 5 similar sentences
st.write("Top 5 similar sentences:")
for i, result in enumerate(mapping_results, 1):
st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {result['Similarity Score']:.4f}")
if __name__ == "__main__":
main() |