Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import BartForConditionalGeneration, BartTokenizer | |
from youtube_transcript_api import YouTubeTranscriptApi | |
# Load BART model and tokenizer | |
model_name = 'facebook/bart-large-cnn' | |
tokenizer = BartTokenizer.from_pretrained(model_name) | |
model = BartForConditionalGeneration.from_pretrained(model_name) | |
def get_transcript(url): | |
try: | |
video_id = url.split('=')[1] | |
transcript_list = YouTubeTranscriptApi.get_transcript(video_id) | |
transcript_text = "" | |
for item in transcript_list: | |
transcript_text += item['text'] + "\n" | |
return transcript_text | |
except Exception as e: | |
return "Error fetching transcript: " + str(e) | |
def summarize_transcript(transcript): | |
input_ids = tokenizer.encode("summarize: " + transcript, return_tensors="pt", max_length=1024, truncation=True) | |
summary_ids = model.generate(input_ids, num_beams=4, min_length=30, max_length=200, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
def main(): | |
st.title("YouTube Video Transcription Summarizer") | |
video_url = st.text_input("Enter YouTube Video URL:") | |
if st.button("Summarize Transcript"): | |
transcript = get_transcript(video_url) | |
if not transcript: | |
st.error("Error fetching transcript.") | |
else: | |
summary = summarize_transcript(transcript) | |
st.subheader("Summary:") | |
st.write(summary) | |
if __name__ == "__main__": | |
main() | |