cfc-tech commited on
Commit
b3d05dd
·
verified ·
1 Parent(s): ba86223
Files changed (1) hide show
  1. app.py +0 -32
app.py DELETED
@@ -1,32 +0,0 @@
1
- import gradio as gr
2
- from pytube import YouTube
3
- import subprocess
4
- from huggingsound import SpeechRecognitionModel
5
- import torch
6
- import librosa
7
- import soundfile as sf
8
- from transformers import pipeline
9
-
10
- def process_video(video_url):
11
- yt = YouTube(video_url)
12
- audio_file = yt.streams.filter(only_audio=True, file_extension='mp4').first().download(filename='ytaudio.mp4')
13
- subprocess.run(['ffmpeg', '-i', 'ytaudio.mp4', '-acodec', 'pcm_s16le', '-ar', '16000', 'ytaudio.wav'])
14
-
15
- device = "cuda" if torch.cuda.is_available() else "cpu"
16
- model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english", device=device)
17
-
18
- input_file = 'ytaudio.wav'
19
- stream = librosa.stream(input_file, block_length=30, frame_length=16000, hop_length=16000)
20
-
21
- full_transcript = ''
22
- for i, speech in enumerate(stream):
23
- sf.write(f'{i}.wav', speech, 16000)
24
- transcription = model.transcribe([f'{i}.wav'])[0]['transcription']
25
- full_transcript += transcription + ' '
26
-
27
- summarization = pipeline('summarization')
28
- summarized_text = summarization(full_transcript, max_length=130, min_length=30, do_sample=False)
29
- return summarized_text[0]['summary_text']
30
-
31
- iface = gr.Interface(fn=process_video, inputs="text", outputs="text", title="YouTube Video Summarizer")
32
- iface.launch()