Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from omegaconf import DictConfig | |
from . import builders, musicgen | |
from einops import rearrange | |
from torch.nn import functional as F | |
from ..modules.conditioners import SegmentWithAttributes | |
import torch | |
import numpy as np | |
import random | |
import typing as tp | |
import math | |
import flashy | |
class MagnetSolver(musicgen.MusicGenSolver): | |
"""Solver for MAGNeT - Masked Audio Generation using | |
a single Non-autoregressive Transformer https://arxiv.org/abs/2401.04577. | |
""" | |
def __init__(self, cfg: DictConfig): | |
super().__init__(cfg) | |
# initialize generation parameters by config | |
self.generation_params = { | |
'use_sampling': self.cfg.generate.lm.use_sampling, | |
'temp': self.cfg.generate.lm.temp, | |
'top_k': self.cfg.generate.lm.top_k, | |
'top_p': self.cfg.generate.lm.top_p, | |
'max_cfg_coef': self.cfg.generate.lm.max_cfg_coef, | |
'min_cfg_coef': self.cfg.generate.lm.min_cfg_coef, | |
'decoding_steps': list(self.cfg.generate.lm.decoding_steps), | |
'anneal_temp': self.cfg.generate.lm.anneal_temp, | |
'span_scoring': self.cfg.generate.lm.span_scoring, | |
'span_arrangement': self.cfg.generate.lm.span_arrangement | |
} | |
sequence_len = int(cfg.dataset.segment_duration * self.compression_model.frame_rate) | |
self.mean_maskrate_to_u = torch.tensor(self._calc_mean_maskrate_to_u_LUT(sequence_len), device=self.device) | |
self.ce_per_codebook = [torch.log(torch.tensor(self.compression_model.cardinality, device=self.device)) | |
for _ in range(cfg.transformer_lm.n_q)] | |
def build_model(self) -> None: | |
self.cfg.transformer_lm.segment_duration = self.cfg.dataset.segment_duration | |
self.cfg.transformer_lm.span_len = self.cfg.masking.span_len | |
assert self.cfg.efficient_attention_backend == "xformers", "MAGNeT v1 models support only xformers backend." | |
super().build_model() | |
def _calc_mean_maskrate_to_u_LUT(self, T: int): | |
""" Create a Look Up Table (LUT) transforming a discrete masking percentage m in 0,1,...,100 to u, | |
the number of overlapping spans of length L to place s.t. the masking rate is approximately m/float(100). | |
It first creates the inverse transformation, of the masking rate as function of u, | |
using the expression choose(T - L, u) / choose(T, u), where L is the atomic span length used | |
during masking. See https://arxiv.org/abs/2401.04577, | |
appendix C, for the mean mask rate derivation. | |
We leverage the fact that: | |
choose(T - L, u) / choose(T, u) = Prod_{j = 0}^{u - 1}((T - L - j)/(T - j)) | |
in the provided implementation, in order to avoid overflow. | |
Args: | |
T (float): Sequence length. | |
Returns: | |
(List) A LUT transforming m in 0,1,...,100 to u, | |
s.t. the masking rate of the span-L mask is approximately m/float(100). | |
""" | |
L = self.cfg.masking.span_len | |
u2mean = [0.0] # mean mask rate is 0.0 for u = 0 | |
v = (T - L) / float(T) | |
for u in range(1, T): | |
u2mean.append(1 - v) | |
v *= (T - L - u) / (T - u) # Overflow-safe implementation of choose(T - L, u) / choose(T, u). | |
mean2u = [] | |
for maskperc in range(101): | |
maskrate = maskperc / float(100) | |
u = int(np.searchsorted(u2mean, maskrate)) | |
mean2u.append(u) | |
return mean2u | |
def _non_spans_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor: | |
""" Construct a boolean mask of shape [B, T, 1], with masking rates defined by mask_probs. | |
The masked tokens are singletons, placed uniformly at random. | |
Args: | |
mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,] | |
B (int): Batch size. | |
T (int): Sequence length. | |
device (torch.device): device of the output tensor | |
Returns: | |
(torch.Tensor): A mask of shape [B, T] | |
""" | |
num_token_masked = (T * mask_probs).round().clamp(min=1) | |
batch_randperm = torch.rand((B, T), device=device).argsort(dim=-1) | |
return batch_randperm < rearrange(num_token_masked, 'b -> b 1') | |
def _spans_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor: | |
""" Construct a spans mask with masking rates defined by mask_probs, | |
where the atomic span length ( > 1 ) is defined by cfg.masking.span_len. | |
Args: | |
mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,] | |
B (int): Batch size. | |
T (int): Sequence length. | |
device (torch.device): device of the output tensor | |
Returns: | |
(torch.Tensor): A spans mask of shape [B, T] | |
""" | |
rounded_probs = torch.round(100 * mask_probs).long() | |
k = self.mean_maskrate_to_u[rounded_probs].clamp(min=1) # k is the number of span starts | |
# sample random span starts | |
batch_randperm = torch.rand((B, T), device=device).argsort(dim=-1) | |
mask = batch_randperm < rearrange(k, 'b -> b 1') | |
B, T = mask.shape | |
shifted_mask = mask.clone() | |
for _ in range(self.cfg.masking.span_len - 1): | |
shifted_mask = torch.concat((torch.full((B, 1), False, device=device), shifted_mask[:, :-1]), dim=1) | |
mask = torch.logical_or(mask, shifted_mask) | |
return mask | |
def _get_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor: | |
""" Construct a boolean mask with masking rates defined by mask_probs, and atomic | |
span length defined by cfg.masking.span_len. | |
Args: | |
mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,] | |
B (int): Batch size. | |
T (int): Sequence length. | |
device (torch.device): device of the output tensor | |
Returns: | |
(torch.Tensor): A boolean tensor of shape [B, T] | |
""" | |
if self.cfg.masking.span_len <= 1: | |
return self._non_spans_mask(mask_probs, B, T, device) | |
return self._spans_mask(mask_probs, B, T, device) | |
def _compute_cross_entropy_magnet(self, logits: torch.Tensor, | |
targets: torch.Tensor, mask: torch.Tensor, stage: torch.Tensor) -> torch.Tensor: | |
""" Compute cross entropy between multi-codebook targets and model's logits. | |
The cross entropy is computed only on a specific codebook, defined by the stage argument. | |
Valid timesteps for each codebook are pulled from the mask, where invalid | |
timesteps are set to 0. | |
Args: | |
logits (torch.Tensor): Model's logits of shape [B, K, T, card]. | |
targets (torch.Tensor): Target codes, of shape [B, K, T]. | |
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T]. | |
stage (torch.Tensor): The codebook (idx) that is being optimized, as a scalar tensor. | |
Returns: | |
ce (torch.Tensor): Cross entropy of the codebook that is being optimized. | |
""" | |
assert logits.shape[:-1] == targets.shape | |
assert mask.shape == targets.shape | |
ce = torch.zeros([], device=targets.device) | |
logits_k = logits[:, stage, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card] | |
targets_k = targets[:, stage, ...].contiguous().view(-1) # [B x T] | |
mask_k = mask[:, stage, ...].contiguous().view(-1) # [B x T] | |
IGNORE_IDX = -1 | |
targets_k[~mask_k] = IGNORE_IDX | |
q_ce = F.cross_entropy(logits_k, targets_k, ignore_index=IGNORE_IDX) | |
ce += q_ce | |
return ce | |
def run_step(self, idx: int, batch: tp.Tuple[torch.Tensor, tp.List[SegmentWithAttributes]], metrics: dict) -> dict: | |
"""Perform one training or valid step on a given batch.""" | |
check_synchronization_points = idx == 1 and self.device == 'cuda' | |
condition_tensors, audio_tokens, padding_mask = self._prepare_tokens_and_attributes( | |
batch, check_synchronization_points) | |
self.deadlock_detect.update('tokens_and_conditions') | |
if check_synchronization_points: | |
torch.cuda.set_sync_debug_mode('warn') | |
B, K, T = audio_tokens.shape | |
device = self.device | |
# Choose the stage (codebook idx) for update, uniformly at random. | |
stage_ = random.randint(0, K - 1) | |
stage = torch.full((1, ), stage_, device=device) | |
# masking | |
rand_time = torch.zeros((B,), device=device).float().uniform_(0, 1) | |
rand_mask_probs = torch.cos(rand_time * math.pi * 0.5) | |
# stage mask | |
stage_mask = self._get_mask(rand_mask_probs, B, T, device) # [B, T] | |
stage_mask = stage_mask.unsqueeze(1) # [B, 1, T] | |
# Keep all preceding codebooks. | |
mask = torch.full((B, K, T), False, device=device) | |
mask[:, stage, :] = stage_mask | |
# Mask all codebooks larger than stage_ | |
mask_id = self.model.special_token_id | |
mask[:, (stage_+1):, :] = torch.full((B, K - stage_ - 1, T), True, device=device) | |
input_tokens = torch.where(mask, mask_id, audio_tokens) | |
# Take loss only on the chosen stage, and only on the masked tokens. | |
loss_mask = torch.full((B, K, T), False, device=device) | |
loss_mask[:, stage, :] = stage_mask | |
with self.autocast: | |
model_output = self.model.compute_predictions(input_tokens, [], condition_tensors, stage=stage_) | |
logits = model_output.logits | |
loss_mask &= padding_mask | |
ce = self._compute_cross_entropy_magnet(logits, audio_tokens, loss_mask, stage) | |
loss = ce | |
self.deadlock_detect.update('loss') | |
if check_synchronization_points: | |
torch.cuda.set_sync_debug_mode('default') | |
if self.is_training: | |
metrics['lr'] = self.optimizer.param_groups[0]['lr'] | |
if self.scaler is not None: | |
loss = self.scaler.scale(loss) | |
self.deadlock_detect.update('scale') | |
if self.cfg.fsdp.use: | |
loss.backward() | |
flashy.distrib.average_tensors(self.model.buffers()) | |
elif self.cfg.optim.eager_sync: | |
with flashy.distrib.eager_sync_model(self.model): | |
loss.backward() | |
else: | |
# this should always be slower but can be useful | |
# for weird use cases like multiple backwards. | |
loss.backward() | |
flashy.distrib.sync_model(self.model) | |
self.deadlock_detect.update('backward') | |
if self.scaler is not None: | |
self.scaler.unscale_(self.optimizer) | |
if self.cfg.optim.max_norm: | |
if self.cfg.fsdp.use: | |
metrics['grad_norm'] = self.model.clip_grad_norm_(self.cfg.optim.max_norm) # type: ignore | |
else: | |
metrics['grad_norm'] = torch.nn.utils.clip_grad_norm_( | |
self.model.parameters(), self.cfg.optim.max_norm | |
) | |
if self.scaler is None: | |
self.optimizer.step() | |
else: | |
self.scaler.step(self.optimizer) | |
self.scaler.update() | |
if self.lr_scheduler: | |
self.lr_scheduler.step() | |
self.optimizer.zero_grad() | |
self.deadlock_detect.update('optim') | |
if self.scaler is not None: | |
scale = self.scaler.get_scale() | |
metrics['grad_scale'] = scale | |
if not loss.isfinite().all(): | |
raise RuntimeError("Model probably diverged.") | |
metrics['ce'] = ce | |
metrics['ppl'] = torch.exp(ce) | |
return metrics | |
class AudioMagnetSolver(MagnetSolver): | |
"""Solver for audio-MAGNeT. A MAGNeT model for sound generation. | |
More information can be found in the MAGNeT model card. | |
""" | |
DATASET_TYPE: builders.DatasetType = builders.DatasetType.SOUND | |