charoori commited on
Commit
7f88221
1 Parent(s): ac74a45

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -50
app.py CHANGED
@@ -1,53 +1,12 @@
1
  import gradio as gr
2
- from transformers import pipeline
3
- description = """
4
- <p>
5
- <center>
6
- This bot was trained on a dataset of 1000 movie reviews from IMDB. It can suggest movies similar to the one you liked!
7
- <img src="https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot/resolve/main/img/rick.png" alt="rick" width="200"/>
8
- </center>
9
- </p>
10
- """
11
- model = pipeline("text-generation", model="charoori/llm4movies")
12
-
13
- from transformers import AutoModelForCausalLM, AutoTokenizer
14
- import torch
15
-
16
- base_model_id = "mistralai/Mistral-7B-v0.1"
17
- tokenizer = AutoTokenizer.from_pretrained(
18
- base_model_id,
19
- add_bos_token=True,
20
- )
21
- model = AutoModelForCausalLM.from_pretrained("charoori/llm4movies")
22
-
23
- def predict(input, history=[]):
24
- # tokenize the new input sentence
25
- new_user_input_ids = tokenizer.encode(input, return_tensors='pt')
26
-
27
- # append the new user input tokens to the chat history
28
- bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
29
-
30
- # generate a response
31
- # model_input = tokenizer(eval_prompt, return_tensors="pt")
32
- history = model.generate(bot_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id).tolist()
33
-
34
- # convert the tokens to text, and then split the responses into lines
35
- response = tokenizer.decode(model.generate(**bot_input_ids, max_new_tokens=256, repetition_penalty=1.15)[0], skip_special_tokens=True)
36
-
37
- # response = tokenizer.decode(history[0]).split("<|endoftext|>")
38
- #print('decoded_response-->>'+str(response))
39
- response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
40
- #print('response-->>'+str(response))
41
- return response, history
42
-
43
-
44
- interface = gr.Interface(
45
- fn=predict,
46
- title = "Find your next movie!",
47
- inputs="textbox",
48
- outputs="text",
49
  description=description,
50
- examples=[["I liked the movie Matrix because it was very interesting and had a great story. Suggest something similar"]]
51
  )
52
- interface.launch()
53
-
 
1
  import gradio as gr
2
+ from gradio import inputs
3
+ description = "Story generation with GPT-2"
4
+ interface = gr.Interface.load("huggingface/pranavpsv/gpt2-genre-story-generator",
5
+ title = "Story Generation with GPT-2",
6
+ inputs = [
7
+ gr.inputs.Textbox(lines=7, label="Story"),
8
+ ],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  description=description,
10
+ examples=[["Adventurer is approached by a mysterious stranger in the tavern for a new quest"]]
11
  )
12
+ interface.launch()