File size: 8,583 Bytes
a7954c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import streamlit as st

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
# %matplotlib inline

import tensorflow
print (tensorflow.__version__)

st.header("Welcome to the Generative Playground")

from tensorflow.keras.datasets import mnist,cifar10

option = st.selectbox(
    "Which model would you like to get prediction with?",
    ("None","Auto-Regressor", "Auto-Encoder", "Diffusion-Model","Other"))

st.write("You selected:", option)

if option == "None":
    st.write("Please Select the model to get the fun prediction.... :)")

if option == "Auto-Encoder":
    st.write("It is under development")
    st.write("Stay tune... Comming soon... :)")
    
if option == "Other":
    st.write("Stay tune... Updating soon... :)")

if option == "Diffusion-Model":
    st.write("It is under development")
    st.write("Stay tune... Comming soon... :)")
    
if option == "Auto-Regressor":
    if st.button("Run"):
        st.write("Running Auto-Regressor")

        st.write("trained on --> cifar-10 dataset, RTX-GPU's, 50-epochs")
        st.write("This is trail model, updated version will be updated consicutively.")
        
        (trainX, trainy), (testX, testy) = cifar10.load_data()
        
        print('Training data shapes: X=%s, y=%s' % (trainX.shape, trainy.shape))
        print('Testing data shapes: X=%s, y=%s' % (testX.shape, testy.shape))
        
        
        
        for k in range(4):
            fig = plt.figure(figsize=(9,6))
            for j in range(9):
                i = np.random.randint(0, 10000)
                plt.subplot(990 + 1 + j)
                plt.imshow(trainX[i], cmap='gray_r')
                # st.pyplot(fig)
                plt.axis('off')
                #plt.title(trainy[i])
            plt.show()
            st.pyplot(fig)
        
        
        # asdfaf
        
        trainX = np.where(trainX < (0.33 * 256), 0, 1)
        train_data = trainX.astype(np.float32)
        
        testX = np.where(testX < (0.33 * 256), 0, 1)
        test_data = testX.astype(np.float32)
        
        train_data = np.reshape(train_data, (50000, 32, 32, 3))
        test_data = np.reshape(test_data, (10000, 32, 32, 3))
        
        print (train_data.shape, test_data.shape)
        
        
        import tensorflow
        
        class PixelConvLayer(tensorflow.keras.layers.Layer):
            def __init__(self, mask_type, **kwargs):
                super(PixelConvLayer, self).__init__()
                self.mask_type = mask_type
                self.conv = tensorflow.keras.layers.Conv2D(**kwargs)
        
            def build(self, input_shape):
                # Build the conv2d layer to initialize kernel variables
                self.conv.build(input_shape)
                # Use the initialized kernel to create the mask
                kernel_shape = self.conv.kernel.get_shape()
                self.mask = np.zeros(shape=kernel_shape)
                self.mask[: kernel_shape[0] // 2, ...] = 1.0
                self.mask[kernel_shape[0] // 2, : kernel_shape[1] // 2, ...] = 1.0
                if self.mask_type == "B":
                    self.mask[kernel_shape[0] // 2, kernel_shape[1] // 2, ...] = 1.0
        
            def call(self, inputs):
                self.conv.kernel.assign(self.conv.kernel * self.mask)
                return self.conv(inputs)
        
        
        # Next, we build our residual block layer.
        # This is just a normal residual block, but based on the PixelConvLayer.
        class ResidualBlock(tensorflow.keras.layers.Layer):
            def __init__(self, filters, **kwargs):
                super(ResidualBlock, self).__init__(**kwargs)
                self.conv1 = tensorflow.keras.layers.Conv2D(
                    filters=filters, kernel_size=1, activation="relu"
                )
                self.pixel_conv = PixelConvLayer(
                    mask_type="B",
                    filters=filters // 2,
                    kernel_size=3,
                    activation="relu",
                    padding="same",
                )
                self.conv2 = tensorflow.keras.layers.Conv2D(
                    filters=filters, kernel_size=1, activation="relu"
                )
        
            def call(self, inputs):
                x = self.conv1(inputs)
                x = self.pixel_conv(x)
                x = self.conv2(x)
                return tensorflow.keras.layers.add([inputs, x])
        
        inputs = tensorflow.keras.Input(shape=(32,32,3))
        x = PixelConvLayer(
            mask_type="A", filters=128, kernel_size=7, activation="relu", padding="same"
        )(inputs)
        
        for _ in range(5):
            x = ResidualBlock(filters=128)(x)
        
        for _ in range(2):
            x = PixelConvLayer(
                mask_type="B",
                filters=128,
                kernel_size=1,
                strides=1,
                activation="relu",
                padding="valid",
            )(x)
        
        out = tensorflow.keras.layers.Conv2D(
            filters=3, kernel_size=1, strides=1, activation="sigmoid", padding="valid"
        )(x)
        
        pixel_cnn = tensorflow.keras.Model(inputs, out)
        pixel_cnn.summary()
        
        adam = tensorflow.keras.optimizers.Adam(learning_rate=0.0005)
        pixel_cnn.compile(optimizer=adam, loss="binary_crossentropy")
        
        
        # %%
        import os
        checkpoint_path = "training_1/cp.ckpt"
        # checkpoint_path = "training_1/cp.weights.h5"
        checkpoint_dir = os.path.dirname(checkpoint_path)
        
        
        pixel_cnn.load_weights(checkpoint_path)
        
        
        # %% [markdown]
        # # Display Results 81 images
        
        # %%
        # from IPython.display import Image, display
        from tqdm import tqdm
        
        
        # Create an empty array of pixels.
        batch = 1
        pixels = np.zeros(shape=(batch,) + (pixel_cnn.input_shape)[1:])
        batch, rows, cols, channels = pixels.shape
        
        print(pixels.shape)
        
        
        import time 
        
        # progress_text = "Operation in progress. Please wait."
        # my_bar = st.progress(0, progress_text)
        st.caption("Generating..... pls.. wait.. :)")
        my_bar = st.progress(0)
        
        
        # Iterate over the pixels because generation has to be done sequentially pixel by pixel.
        for row in tqdm(range(rows)):
            for col in range(cols):
                for channel in range(channels):
                    time.sleep(0.01)
                    # Feed the whole array and retrieving the pixel value probabilities for the next
                    # pixel.
                    probs = pixel_cnn.predict(pixels)[:, row, col, channel]
                    # Use the probabilities to pick pixel values and append the values to the image
                    # frame.
                    pixels[:, row, col, channel] = tensorflow.math.ceil(
                      probs - tensorflow.random.uniform(probs.shape)
                    )
            my_bar.progress(int(row*3.125))
            # if row<rows/2:
            #     my_bar.progress((rows+1)*2)
            # else:
            #     my_bar.progress(row+51)
            
        my_bar.progress(100)
        time.sleep(1)

        
        from PIL import Image
        # figout = plt.figure(figsize=(9,6))
        # st.image(Image.fromarray((pixels[-1] * 255).astype(np.uint8), 'RGB').show(),caption="image")
        # Convert the generated pixel array to an image
        generated_image = Image.fromarray((pixels[-1] * 255).astype(np.uint8), 'RGB')
        
        # Display the image using Streamlit
        st.image(generated_image, caption="Generated Image")
        
        # counter = 0
        # for i in range(4):
        #     figout = plt.figure(figsize=(9,6))
        #     for j in range(9):
        #         plt.subplot(990 + 1 + j)
        #         plt.imshow(pixels[counter,:,:,0])#, cmap='gray_r')
        #         counter += 1
        #         plt.axis('off')
        #     plt.show()
        #     st.pyplot(figout)
        
        # %%
# else:
#     st.write("Not Available")