Spaces:
Running
Running
<html> | |
<head> | |
<meta charset="utf-8" /> | |
<meta name="viewport" content="width=device-width" /> | |
<title>Teachable Machine Fruits Model</title> | |
<link rel="stylesheet" href="style.css" /> | |
</head> | |
<body> | |
<div class="card" style="text-align: center;"> | |
<h1>Teachable Machine Fruits Model</h1> | |
<button type="button" id="startbutton" style="padding: 10px; margin-bottom:20px;" onclick="init()">Start</button> | |
<div id="webcam-container"></div> | |
<div id="label-container"></div> | |
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest/dist/tf.min.js"></script> | |
<script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@latest/dist/teachablemachine-image.min.js"></script> | |
<script type="text/javascript"> | |
// the link to your model provided by Teachable Machine export panel | |
const URL = "./tm-my-image-model/"; | |
let model, webcam, labelContainer, maxPredictions; | |
// Load the image model and setup the webcam | |
async function init() { | |
document.getElementById("startbutton").style.visibility = "hidden"; | |
const modelURL = URL + "model.json"; | |
const metadataURL = URL + "metadata.json"; | |
// load the model and metadata | |
model = await tmImage.load(modelURL, metadataURL); | |
maxPredictions = model.getTotalClasses(); | |
// Convenience function to setup a webcam | |
const flip = true; // whether to flip the webcam | |
webcam = new tmImage.Webcam(200, 200, flip); // width, height, flip | |
await webcam.setup(); // request access to the webcam | |
await webcam.play(); | |
window.requestAnimationFrame(loop); | |
// append elements to the DOM | |
document.getElementById("webcam-container").appendChild(webcam.canvas); | |
labelContainer = document.getElementById("label-container"); | |
for (let i = 0; i < maxPredictions; i++) { // and class labels | |
labelContainer.appendChild(document.createElement("div")); | |
} | |
} | |
async function loop() { | |
webcam.update(); // update the webcam frame | |
await predict(); | |
window.requestAnimationFrame(loop); | |
} | |
// run the webcam image through the image model | |
async function predict() { | |
// predict can take in an image, video or canvas html element | |
const prediction = await model.predict(webcam.canvas); | |
for (let i = 0; i < maxPredictions; i++) { | |
const classPrediction = | |
prediction[i].className + ": " + prediction[i].probability.toFixed(2); | |
labelContainer.childNodes[i].innerHTML = classPrediction; | |
} | |
} | |
</script> | |
</div> | |
</body> | |
</html> |