Spaces:
Running
Running
import os | |
import logging | |
from llama_index.core import ( | |
SimpleDirectoryReader, | |
# VectorStoreIndex, | |
StorageContext, | |
Settings, | |
get_response_synthesizer) | |
from llama_index.core.query_engine import RetrieverQueryEngine, TransformQueryEngine | |
from llama_index.core.node_parser import SentenceSplitter | |
from llama_index.core.schema import TextNode, MetadataMode | |
from llama_index.core.retrievers import VectorIndexRetriever | |
# from llama_index.core.indices.query.query_transform import HyDEQueryTransform | |
from llama_index.core.response_synthesizers import ResponseMode | |
# from transformers import AutoTokenizer | |
from llama_index.core.vector_stores import VectorStoreQuery | |
from llama_index.core.indices.vector_store.base import VectorStoreIndex | |
from llama_index.vector_stores.qdrant import QdrantVectorStore | |
from qdrant_client import QdrantClient | |
from llama_index.llms.llama_cpp import LlamaCPP | |
from llama_index.embeddings.fastembed import FastEmbedEmbedding | |
QDRANT_API_URL = os.getenv('QDRANT_API_URL') | |
QDRANT_API_KEY = os.getenv('QDRANT_API_KEY') | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class ChatPDF: | |
query_engine = None | |
model_url = "https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat-GGUF/resolve/main/qwen1_5-1_8b-chat-q8_0.gguf" | |
# model_url = "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-q4.gguf" | |
# def messages_to_prompt(messages): | |
# prompt = "" | |
# for message in messages: | |
# if message.role == 'system': | |
# prompt += f"<|system|>\n{message.content}</s>\n" | |
# elif message.role == 'user': | |
# prompt += f"<|user|>\n{message.content}</s>\n" | |
# elif message.role == 'assistant': | |
# prompt += f"<|assistant|>\n{message.content}</s>\n" | |
# if not prompt.startswith("<|system|>\n"): | |
# prompt = "<|system|>\n</s>\n" + prompt | |
# prompt = prompt + "<|assistant|>\n" | |
# return prompt | |
# def completion_to_prompt(completion): | |
# return f"<|system|>\n</s>\n<|user|>\n{completion}</s>\n<|assistant|>\n" | |
def __init__(self): | |
self.text_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20) | |
logger.info("initializing the vector store related objects") | |
# client = QdrantClient(host="localhost", port=6333) | |
# client = QdrantClient(url=QDRANT_API_URL, api_key=QDRANT_API_KEY) | |
client = QdrantClient(":memory:") | |
self.vector_store = QdrantVectorStore( | |
client=client, | |
collection_name="rag_documents", | |
# enable_hybrid=True | |
) | |
logger.info("initializing the FastEmbedEmbedding") | |
self.embed_model = FastEmbedEmbedding( | |
# model_name="BAAI/bge-small-en" | |
) | |
llm = LlamaCPP( | |
model_url=self.model_url, | |
temperature=0.1, | |
max_new_tokens=256, | |
context_window=3900, | |
# generate_kwargs={}, | |
# model_kwargs={"n_gpu_layers": -1}, | |
# messages_to_prompt=self.messages_to_prompt, | |
# completion_to_prompt=self.completion_to_prompt, | |
verbose=True, | |
) | |
# tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct") | |
# tokenizer.save_pretrained("./models/tokenizer/") | |
logger.info("initializing the global settings") | |
Settings.text_splitter = self.text_parser | |
Settings.embed_model = self.embed_model | |
Settings.llm = llm | |
# Settings.tokenzier = tokenizer | |
Settings.transformations = [self.text_parser] | |
def ingest(self, files_dir: str): | |
text_chunks = [] | |
doc_ids = [] | |
nodes = [] | |
docs = SimpleDirectoryReader(input_dir=files_dir).load_data() | |
logger.info("enumerating docs") | |
for doc_idx, doc in enumerate(docs): | |
curr_text_chunks = self.text_parser.split_text(doc.text) | |
text_chunks.extend(curr_text_chunks) | |
doc_ids.extend([doc_idx] * len(curr_text_chunks)) | |
logger.info("enumerating text_chunks") | |
for idx, text_chunk in enumerate(text_chunks): | |
node = TextNode(text=text_chunk) | |
src_doc = docs[doc_ids[idx]] | |
node.metadata = src_doc.metadata | |
nodes.append(node) | |
logger.info("enumerating nodes") | |
for node in nodes: | |
node_embedding = self.embed_model.get_text_embedding( | |
node.get_content(metadata_mode=MetadataMode.ALL) | |
) | |
node.embedding = node_embedding | |
logger.info("initializing the storage context") | |
storage_context = StorageContext.from_defaults(vector_store=self.vector_store) | |
logger.info("indexing the nodes in VectorStoreIndex") | |
index = VectorStoreIndex( | |
nodes=nodes, | |
storage_context=storage_context, | |
transformations=Settings.transformations, | |
) | |
# logger.info("configure retriever") | |
# retriever = VectorIndexRetriever( | |
# index=index, | |
# similarity_top_k=6, | |
# # vector_store_query_mode="hybrid" | |
# ) | |
# logger.info("configure response synthesizer") | |
# response_synthesizer = get_response_synthesizer( | |
# # streaming=True, | |
# response_mode=ResponseMode.COMPACT, | |
# ) | |
# logger.info("assemble query engine") | |
# self.query_engine = RetrieverQueryEngine( | |
# retriever=retriever, | |
# response_synthesizer=response_synthesizer, | |
# ) | |
self.query_engine = index.as_query_engine() | |
# logger.info("creating the HyDEQueryTransform instance") | |
# hyde = HyDEQueryTransform(include_original=True) | |
# self.hyde_query_engine = TransformQueryEngine(vector_query_engine, hyde) | |
def ask(self, query: str): | |
if not self.query_engine: | |
return "Please, add a PDF document first." | |
logger.info("retrieving the response to the query") | |
# response = self.query_engine.query(str_or_query_bundle=query) | |
response = self.query_engine.query(query) | |
print(response) | |
return response | |
def clear(self): | |
self.query_engine = None |