File size: 17,715 Bytes
d42bf88
e939d7a
 
 
 
 
 
d42bf88
e939d7a
 
d42bf88
af80823
e939d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d42bf88
e939d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d42bf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e939d7a
ed3e57a
 
e939d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810078
af80823
 
d42bf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e939d7a
d42bf88
 
 
 
 
 
 
 
 
 
e939d7a
d42bf88
 
 
 
e939d7a
d42bf88
e939d7a
d42bf88
e939d7a
ed3e57a
d42bf88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e939d7a
d42bf88
1810078
d42bf88
 
 
af80823
d42bf88
 
 
 
 
 
 
 
 
 
 
 
e939d7a
d42bf88
 
 
 
e939d7a
d42bf88
e939d7a
ca42c83
af80823
 
d42bf88
 
af80823
d42bf88
 
 
af80823
d42bf88
af80823
e939d7a
 
 
 
ed3e57a
e939d7a
d42bf88
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

import torch
import more_itertools
from tqdm import tqdm
import json
import time
import os
import numpy as np
from transformers import LogitsProcessor, MinNewTokensLengthLogitsProcessor, ForcedEOSTokenLogitsProcessor
from PIL import Image
import cv2

class VisualLogitsProcessor(LogitsProcessor):
    def __init__(self, tokenizer):
        super().__init__()
        self.tokenizer = tokenizer
        self.object_token_id = self.tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]
        self.prebox_token_id = self.tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
        self.box_token_id = self.tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
        self.previsual_token_id = self.tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
        self.visual_token_id = self.tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
        self.eos_token_id = self.tokenizer.encode(self.tokenizer.eos_token)[-1]
        self.endofobject_token_id = self.tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
        self.topk = 2

    def __call__(self, input_ids, scores):
        # print("decoding===>", self.tokenizer.decode(scores.sort(descending=True).indices.tolist()[0][:self.topk]))
        # import pdb; pdb.set_trace()
        if self.object_token_id in scores.sort(descending=True).indices.tolist()[0][1:self.topk] and self.eos_token_id not in scores.sort(descending=True).indices.tolist()[0][:self.topk] and (input_ids == self.object_token_id).sum() * 2 == (input_ids == self.endofobject_token_id).sum():
            scores[0, self.object_token_id] = 1000
        if input_ids[0, -1] == self.object_token_id and input_ids[0, -2] != self.prebox_token_id:
            if (input_ids[0, :-1] == self.object_token_id).sum() != 0:
                # print("generate a previsual token next")
                scores[0, self.previsual_token_id] = 1000
        elif input_ids[0, -1] == self.previsual_token_id or input_ids[0, -1] == self.visual_token_id:
            # print("stop to run bbox generation for " + "previsual" if input_ids[0, -1] == self.previsual_token_id else "visual")
            scores[0, self.eos_token_id] = 1000
        elif input_ids[0, -1] == self.endofobject_token_id and input_ids[0, -2] != self.box_token_id:
            # print("generate a visual token next")
            scores[0, self.visual_token_id] = 1000
        return scores


def prepare_batch_images(batch, image_processor):
    batch_images = None
    for b in batch:
        b_image = image_processor(b["image"]).unsqueeze(0).unsqueeze(1).unsqueeze(0)
        if batch_images is None:
            batch_images = b_image
        else:
            batch_images = torch.cat([batch_images, b_image], dim=0)
    return batch_images


# def captioner(
#         model, tokenizer, image_ori, batch_images, input_ids, attention_mask, image_start_index_list, image_nums,
#         added_bbox_list, debug=True):
#     """Evaluate a model on COCO dataset.
#     Returns:
#         float: CIDEr score
#
#     """
#     visual_logits_processor = VisualLogitsProcessor(tokenizer)
#     model.eval()
#     # model.eval().cuda()
#     lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
#     media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
#     endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
#     pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
#     bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
#     previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
#     visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
#     box_token = "<|#box#|>"
#     prebox_token = "<|#prebox#|>"
#     endofobject_token = "<|#endofobject#|>"
#     object_token = "<|#object#|>"
#     ori_prompt_length = len(input_ids[0])
#     have_prebox = False
#     prompt = None
#     out_image = None
#     no_end = True
#     for i in range(500):
#         if no_end:
#             batch_images = batch_images
#             if prompt == None:
#                 input_ids = input_ids
#                 attention_mask = attention_mask
#             else:
#                 encodings = tokenizer(
#                     [prompt],
#                     padding="longest",
#                     truncation=True,
#                     return_tensors="pt",
#                     max_length=2000,
#                 )
#                 attention_mask = encodings["attention_mask"]
#                 input_ids = encodings["input_ids"]
#             image_start_index_list = image_start_index_list
#             image_nums = image_nums
#             if debug:
#                 print("input--->", tokenizer.decode(input_ids[0]))
#             p1 = MinNewTokensLengthLogitsProcessor(
#                 prompt_length_to_skip=input_ids.shape[-1],
#                 min_new_tokens=5,
#                 eos_token_id=bos_token_id,
#             )
#             with torch.inference_mode():
#                 outputs = model.generate(
#                     batch_images,
#                     input_ids,
#                     attention_mask=attention_mask,
#                     max_new_tokens=20,
#                     # min_new_tokens=8,
#                     num_beams=1,
#                     # length_penalty=0,
#                     image_start_index_list=image_start_index_list,
#                     image_nums=image_nums,
#                     added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
#                     logits_processor_list=[p1, visual_logits_processor],
#                 )
#             if debug:
#                 print("outputs--->", tokenizer.decode(outputs[0]))
#                 input_ids = encodings["input_ids"]
#                 attention_mask = encodings["attention_mask"]
#                 image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
#                 image_start_index_list = [[x] for x in image_start_index_list]
#                 image_nums = [1] * len(input_ids)
#                 if debug:
#                     print("get the visual bbox--->", tokenizer.decode(input_ids[0]))
#                 with torch.no_grad():
#                     outputs = model(
#                         vision_x=batch_images,
#                         lang_x=input_ids,
#                         attention_mask=attention_mask,
#                         image_nums=image_nums,
#                         image_start_index_list=image_start_index_list,
#                         added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
#                         add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
#                     )
#                 boxes = outputs["boxes"]
#                 scores = outputs["scores"]
#                 if debug:
#                     print("box num---->", len(boxes))
#                 # if not model.valid:
#                 #     import pdb; pdb.set_trace()
#                 if boxes is not None:
#                     if is_visual:
#                         if have_prebox:
#                             added_bbox_list.pop()
#                             prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
#                             have_prebox = False
#                             if debug:
#                                 print("find previsual and remove it--->", prompt)
#                         first_box = boxes[scores.argmax()]
#                         added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
#                         prompt = prompt[:-len(tokenizer.eos_token)]
#                         prompt += box_token + endofobject_token
#                         if debug:
#                             print("after inserting visual---->", prompt)
#
#                     else:
#                         import numpy as np
#                         import cv2
#
#                         # exit()
#                         pre_box = boxes[scores.argmax()]
#                         added_bbox_list += [torch.tensor(pre_box).unsqueeze(0) / 224]
#                         prompt = prompt[:-len(tokenizer.eos_token)]
#                         prompt += prebox_token + object_token
#                         have_prebox = True
#                         if debug:
#                             print("after inserting previsual---->", prompt)
#                 else:
#                     # if debug:
#                     #     import pdb;pdb.set_trace()
#                     prompt = tokenizer.decode(outputs.clone()[0])
#                     if debug:
#                         print("before else---->", prompt)
#                     prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
#                     if debug:
#                         print("after else---->", prompt)
#
#             else:
#                 no_end = False
#                 # break
#             # print("outputs--->", tokenizer.decode(outputs[0]))
#     outputs = outputs[:, ori_prompt_length:]
#     outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].replace('"', "")
#     open_cv_image = np.array(image_ori)
#     open_cv_image = open_cv_image[:, :, ::-1].copy()
#     width = image_ori.width
#     height = image_ori.height
#     for i, pre_box in enumerate(added_bbox_list):
#         open_cv_image = cv2.rectangle(open_cv_image, np.array(pre_box[0][:2]*[width,height]).astype(int), np.array(pre_box[0][2:]*[width,height]).astype(int),
#                                       (0, 255, 0), i + 1)
#     out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
#     # new_predictions = [
#     #     postprocess_captioning_generation(out).replace('"', "")
#     #     for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
#     # ]
#     # import pdb; pdb.set_trace()
#
#     return outputs, out_image




def captioner(
        model, tokenizer, image_ori, batch_images, input_ids, attention_mask, image_start_index_list, image_nums,
        added_bbox_list, debug=True):
    """Evaluate a model on COCO dataset.
    Returns:
        float: CIDEr score
    """
    visual_logits_processor = VisualLogitsProcessor(tokenizer)
    model.eval()
    # model.eval().cuda()
    lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
    media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
    endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
    pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
    bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
    previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
    visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
    box_token = "<|#box#|>"
    prebox_token = "<|#prebox#|>"
    endofobject_token = "<|#endofobject#|>"
    object_token = "<|#object#|>"
    ori_prompt_length = len(input_ids[0])
    have_prebox = False
    prompt = None
    out_image = None
    no_end = True
    for i in range(100):
        if no_end:
            batch_images = batch_images
            if prompt == None:
                input_ids = input_ids
                attention_mask = attention_mask
            else:
                encodings = tokenizer(
                    [prompt],
                    padding="longest",
                    truncation=True,
                    return_tensors="pt",
                    max_length=2000,
                )
                attention_mask = encodings["attention_mask"]
                input_ids = encodings["input_ids"]
            image_start_index_list = image_start_index_list
            image_nums = image_nums
            if debug:
                print("input--->", tokenizer.decode(input_ids[0]))
            p1 = MinNewTokensLengthLogitsProcessor(
                prompt_length_to_skip=input_ids.shape[-1],
                min_new_tokens=5,
                eos_token_id=bos_token_id,
            )
            with torch.inference_mode():
                outputs = model.generate(
                    batch_images,
                    input_ids,
                    attention_mask=attention_mask,
                    max_new_tokens=20,
                    # min_new_tokens=8,
                    num_beams=1,
                    # length_penalty=0,
                    image_start_index_list=image_start_index_list,
                    image_nums=image_nums,
                    added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
                    logits_processor_list=[p1, visual_logits_processor],
                )
            if debug:
                print("outputs--->", tokenizer.decode(outputs[0]))
            if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
                prompt = tokenizer.decode(outputs.clone()[0])
                is_visual = (outputs[0, -2] == visual_token_id)
                batch_text = tokenizer.batch_decode(outputs[:, :-1])
                encodings = tokenizer(
                    batch_text,
                    padding="longest",
                    truncation=True,
                    return_tensors="pt",
                    max_length=2000,
                )
                input_ids = encodings["input_ids"]
                attention_mask = encodings["attention_mask"]
                image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
                image_start_index_list = [[x] for x in image_start_index_list]
                image_nums = [1] * len(input_ids)
                if debug:
                    print("get the visual bbox--->", tokenizer.decode(input_ids[0]))
                with torch.no_grad():
                    outputs = model(
                        vision_x=batch_images,
                        lang_x=input_ids,
                        attention_mask=attention_mask,
                        image_nums=image_nums,
                        image_start_index_list=image_start_index_list,
                        added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
                        add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
                    )
                boxes = outputs["boxes"]
                scores = outputs["scores"]
                if debug:
                    print("box num---->", len(boxes))
                # if not model.valid:
                #     import pdb; pdb.set_trace()
                if boxes is not None:
                    if is_visual:
                        if have_prebox:
                            added_bbox_list.pop()
                            prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
                            have_prebox = False
                            if debug:
                                print("find previsual and remove it--->", prompt)
                        first_box = boxes[scores.argmax()]
                        added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
                        prompt = prompt[:-len(tokenizer.eos_token)]
                        prompt += box_token + endofobject_token
                        if debug:
                            print("after inserting visual---->", prompt)

                    else:
                        import numpy as np
                        import cv2

                        # exit()
                        pre_box = boxes[scores.argmax()]
                        added_bbox_list += [torch.tensor(pre_box).unsqueeze(0) / 224]
                        prompt = prompt[:-len(tokenizer.eos_token)]
                        prompt += prebox_token + object_token
                        have_prebox = True
                        if debug:
                            print("after inserting previsual---->", prompt)
                else:
                    # if debug:
                    #     import pdb;pdb.set_trace()
                    prompt = tokenizer.decode(outputs.clone()[0])
                    if debug:
                        print("before else---->", prompt)
                    prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
                    if debug:
                        print("after else---->", prompt)
            else:
                no_end = False
    outputs = outputs[:, ori_prompt_length:]
    outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].replace('"', "")
    open_cv_image = np.array(image_ori)
    open_cv_image = open_cv_image[:, :, ::-1].copy()
    width = image_ori.width
    height = image_ori.height
    for i, pre_box in enumerate(added_bbox_list):
        print(pre_box)
        open_cv_image = cv2.rectangle(open_cv_image, (np.array(pre_box[0][:2]) * [width, height]).astype(int),
                                      (np.array(pre_box[0][2:]) * [width, height]).astype(int),
                                      (0, 255, 0), i + 1)

    out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
    # new_predictions = [
    #     postprocess_captioning_generation(out).replace('"', "")
    #     for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
    # ]
    # import pdb; pdb.set_trace()

    return outputs, out_image