Spaces:
Runtime error
Runtime error
File size: 17,715 Bytes
d42bf88 e939d7a d42bf88 e939d7a d42bf88 af80823 e939d7a d42bf88 e939d7a d42bf88 e939d7a ed3e57a e939d7a 1810078 af80823 d42bf88 e939d7a d42bf88 e939d7a d42bf88 e939d7a d42bf88 e939d7a d42bf88 e939d7a ed3e57a d42bf88 e939d7a d42bf88 1810078 d42bf88 af80823 d42bf88 e939d7a d42bf88 e939d7a d42bf88 e939d7a ca42c83 af80823 d42bf88 af80823 d42bf88 af80823 d42bf88 af80823 e939d7a ed3e57a e939d7a d42bf88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import torch
import more_itertools
from tqdm import tqdm
import json
import time
import os
import numpy as np
from transformers import LogitsProcessor, MinNewTokensLengthLogitsProcessor, ForcedEOSTokenLogitsProcessor
from PIL import Image
import cv2
class VisualLogitsProcessor(LogitsProcessor):
def __init__(self, tokenizer):
super().__init__()
self.tokenizer = tokenizer
self.object_token_id = self.tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]
self.prebox_token_id = self.tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
self.box_token_id = self.tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
self.previsual_token_id = self.tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
self.visual_token_id = self.tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
self.eos_token_id = self.tokenizer.encode(self.tokenizer.eos_token)[-1]
self.endofobject_token_id = self.tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
self.topk = 2
def __call__(self, input_ids, scores):
# print("decoding===>", self.tokenizer.decode(scores.sort(descending=True).indices.tolist()[0][:self.topk]))
# import pdb; pdb.set_trace()
if self.object_token_id in scores.sort(descending=True).indices.tolist()[0][1:self.topk] and self.eos_token_id not in scores.sort(descending=True).indices.tolist()[0][:self.topk] and (input_ids == self.object_token_id).sum() * 2 == (input_ids == self.endofobject_token_id).sum():
scores[0, self.object_token_id] = 1000
if input_ids[0, -1] == self.object_token_id and input_ids[0, -2] != self.prebox_token_id:
if (input_ids[0, :-1] == self.object_token_id).sum() != 0:
# print("generate a previsual token next")
scores[0, self.previsual_token_id] = 1000
elif input_ids[0, -1] == self.previsual_token_id or input_ids[0, -1] == self.visual_token_id:
# print("stop to run bbox generation for " + "previsual" if input_ids[0, -1] == self.previsual_token_id else "visual")
scores[0, self.eos_token_id] = 1000
elif input_ids[0, -1] == self.endofobject_token_id and input_ids[0, -2] != self.box_token_id:
# print("generate a visual token next")
scores[0, self.visual_token_id] = 1000
return scores
def prepare_batch_images(batch, image_processor):
batch_images = None
for b in batch:
b_image = image_processor(b["image"]).unsqueeze(0).unsqueeze(1).unsqueeze(0)
if batch_images is None:
batch_images = b_image
else:
batch_images = torch.cat([batch_images, b_image], dim=0)
return batch_images
# def captioner(
# model, tokenizer, image_ori, batch_images, input_ids, attention_mask, image_start_index_list, image_nums,
# added_bbox_list, debug=True):
# """Evaluate a model on COCO dataset.
# Returns:
# float: CIDEr score
#
# """
# visual_logits_processor = VisualLogitsProcessor(tokenizer)
# model.eval()
# # model.eval().cuda()
# lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
# media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
# endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
# pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
# bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
# previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
# visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
# box_token = "<|#box#|>"
# prebox_token = "<|#prebox#|>"
# endofobject_token = "<|#endofobject#|>"
# object_token = "<|#object#|>"
# ori_prompt_length = len(input_ids[0])
# have_prebox = False
# prompt = None
# out_image = None
# no_end = True
# for i in range(500):
# if no_end:
# batch_images = batch_images
# if prompt == None:
# input_ids = input_ids
# attention_mask = attention_mask
# else:
# encodings = tokenizer(
# [prompt],
# padding="longest",
# truncation=True,
# return_tensors="pt",
# max_length=2000,
# )
# attention_mask = encodings["attention_mask"]
# input_ids = encodings["input_ids"]
# image_start_index_list = image_start_index_list
# image_nums = image_nums
# if debug:
# print("input--->", tokenizer.decode(input_ids[0]))
# p1 = MinNewTokensLengthLogitsProcessor(
# prompt_length_to_skip=input_ids.shape[-1],
# min_new_tokens=5,
# eos_token_id=bos_token_id,
# )
# with torch.inference_mode():
# outputs = model.generate(
# batch_images,
# input_ids,
# attention_mask=attention_mask,
# max_new_tokens=20,
# # min_new_tokens=8,
# num_beams=1,
# # length_penalty=0,
# image_start_index_list=image_start_index_list,
# image_nums=image_nums,
# added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
# logits_processor_list=[p1, visual_logits_processor],
# )
# if debug:
# print("outputs--->", tokenizer.decode(outputs[0]))
# input_ids = encodings["input_ids"]
# attention_mask = encodings["attention_mask"]
# image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
# image_start_index_list = [[x] for x in image_start_index_list]
# image_nums = [1] * len(input_ids)
# if debug:
# print("get the visual bbox--->", tokenizer.decode(input_ids[0]))
# with torch.no_grad():
# outputs = model(
# vision_x=batch_images,
# lang_x=input_ids,
# attention_mask=attention_mask,
# image_nums=image_nums,
# image_start_index_list=image_start_index_list,
# added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
# add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
# )
# boxes = outputs["boxes"]
# scores = outputs["scores"]
# if debug:
# print("box num---->", len(boxes))
# # if not model.valid:
# # import pdb; pdb.set_trace()
# if boxes is not None:
# if is_visual:
# if have_prebox:
# added_bbox_list.pop()
# prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
# have_prebox = False
# if debug:
# print("find previsual and remove it--->", prompt)
# first_box = boxes[scores.argmax()]
# added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
# prompt = prompt[:-len(tokenizer.eos_token)]
# prompt += box_token + endofobject_token
# if debug:
# print("after inserting visual---->", prompt)
#
# else:
# import numpy as np
# import cv2
#
# # exit()
# pre_box = boxes[scores.argmax()]
# added_bbox_list += [torch.tensor(pre_box).unsqueeze(0) / 224]
# prompt = prompt[:-len(tokenizer.eos_token)]
# prompt += prebox_token + object_token
# have_prebox = True
# if debug:
# print("after inserting previsual---->", prompt)
# else:
# # if debug:
# # import pdb;pdb.set_trace()
# prompt = tokenizer.decode(outputs.clone()[0])
# if debug:
# print("before else---->", prompt)
# prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
# if debug:
# print("after else---->", prompt)
#
# else:
# no_end = False
# # break
# # print("outputs--->", tokenizer.decode(outputs[0]))
# outputs = outputs[:, ori_prompt_length:]
# outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].replace('"', "")
# open_cv_image = np.array(image_ori)
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# width = image_ori.width
# height = image_ori.height
# for i, pre_box in enumerate(added_bbox_list):
# open_cv_image = cv2.rectangle(open_cv_image, np.array(pre_box[0][:2]*[width,height]).astype(int), np.array(pre_box[0][2:]*[width,height]).astype(int),
# (0, 255, 0), i + 1)
# out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
# # new_predictions = [
# # postprocess_captioning_generation(out).replace('"', "")
# # for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
# # ]
# # import pdb; pdb.set_trace()
#
# return outputs, out_image
def captioner(
model, tokenizer, image_ori, batch_images, input_ids, attention_mask, image_start_index_list, image_nums,
added_bbox_list, debug=True):
"""Evaluate a model on COCO dataset.
Returns:
float: CIDEr score
"""
visual_logits_processor = VisualLogitsProcessor(tokenizer)
model.eval()
# model.eval().cuda()
lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
box_token = "<|#box#|>"
prebox_token = "<|#prebox#|>"
endofobject_token = "<|#endofobject#|>"
object_token = "<|#object#|>"
ori_prompt_length = len(input_ids[0])
have_prebox = False
prompt = None
out_image = None
no_end = True
for i in range(100):
if no_end:
batch_images = batch_images
if prompt == None:
input_ids = input_ids
attention_mask = attention_mask
else:
encodings = tokenizer(
[prompt],
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
attention_mask = encodings["attention_mask"]
input_ids = encodings["input_ids"]
image_start_index_list = image_start_index_list
image_nums = image_nums
if debug:
print("input--->", tokenizer.decode(input_ids[0]))
p1 = MinNewTokensLengthLogitsProcessor(
prompt_length_to_skip=input_ids.shape[-1],
min_new_tokens=5,
eos_token_id=bos_token_id,
)
with torch.inference_mode():
outputs = model.generate(
batch_images,
input_ids,
attention_mask=attention_mask,
max_new_tokens=20,
# min_new_tokens=8,
num_beams=1,
# length_penalty=0,
image_start_index_list=image_start_index_list,
image_nums=image_nums,
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
logits_processor_list=[p1, visual_logits_processor],
)
if debug:
print("outputs--->", tokenizer.decode(outputs[0]))
if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
prompt = tokenizer.decode(outputs.clone()[0])
is_visual = (outputs[0, -2] == visual_token_id)
batch_text = tokenizer.batch_decode(outputs[:, :-1])
encodings = tokenizer(
batch_text,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
if debug:
print("get the visual bbox--->", tokenizer.decode(input_ids[0]))
with torch.no_grad():
outputs = model(
vision_x=batch_images,
lang_x=input_ids,
attention_mask=attention_mask,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
)
boxes = outputs["boxes"]
scores = outputs["scores"]
if debug:
print("box num---->", len(boxes))
# if not model.valid:
# import pdb; pdb.set_trace()
if boxes is not None:
if is_visual:
if have_prebox:
added_bbox_list.pop()
prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
have_prebox = False
if debug:
print("find previsual and remove it--->", prompt)
first_box = boxes[scores.argmax()]
added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
prompt = prompt[:-len(tokenizer.eos_token)]
prompt += box_token + endofobject_token
if debug:
print("after inserting visual---->", prompt)
else:
import numpy as np
import cv2
# exit()
pre_box = boxes[scores.argmax()]
added_bbox_list += [torch.tensor(pre_box).unsqueeze(0) / 224]
prompt = prompt[:-len(tokenizer.eos_token)]
prompt += prebox_token + object_token
have_prebox = True
if debug:
print("after inserting previsual---->", prompt)
else:
# if debug:
# import pdb;pdb.set_trace()
prompt = tokenizer.decode(outputs.clone()[0])
if debug:
print("before else---->", prompt)
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
if debug:
print("after else---->", prompt)
else:
no_end = False
outputs = outputs[:, ori_prompt_length:]
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].replace('"', "")
open_cv_image = np.array(image_ori)
open_cv_image = open_cv_image[:, :, ::-1].copy()
width = image_ori.width
height = image_ori.height
for i, pre_box in enumerate(added_bbox_list):
print(pre_box)
open_cv_image = cv2.rectangle(open_cv_image, (np.array(pre_box[0][:2]) * [width, height]).astype(int),
(np.array(pre_box[0][2:]) * [width, height]).astype(int),
(0, 255, 0), i + 1)
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
# new_predictions = [
# postprocess_captioning_generation(out).replace('"', "")
# for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
# ]
# import pdb; pdb.set_trace()
return outputs, out_image |