Spaces:
Runtime error
Runtime error
# YOLOX-CPP-ncnn | |
Cpp file compile of YOLOX object detection base on [ncnn](https://github.com/Tencent/ncnn). | |
## Tutorial | |
### Step1 | |
Clone [ncnn](https://github.com/Tencent/ncnn) first, then please following [build tutorial of ncnn](https://github.com/Tencent/ncnn/wiki/how-to-build) to build on your own device. | |
### Step2 | |
First, we try the original onnx2ncnn solution by using provided tools to generate onnx file. | |
For example, if you want to generate onnx file of yolox-s, please run the following command: | |
```shell | |
cd <path of yolox> | |
python3 tools/export_onnx.py -n yolox-s | |
``` | |
Then a yolox.onnx file is generated. | |
### Step3 | |
Generate ncnn param and bin file. | |
```shell | |
cd <path of ncnn> | |
cd build/tools/ncnn | |
./onnx2ncnn yolox.onnx model.param model.bin | |
``` | |
Since Focus module is not supported in ncnn. You will see warnings like: | |
```shell | |
Unsupported slice step! | |
``` | |
However, don't worry on this as a C++ version of Focus layer is already implemented in yolox.cpp. | |
### Step4 | |
Open **model.param**, and modify it. For more information on the ncnn param and model file structure, please take a look at this [wiki](https://github.com/Tencent/ncnn/wiki/param-and-model-file-structure). | |
Before (just an example): | |
``` | |
295 328 | |
Input images 0 1 images | |
Split splitncnn_input0 1 4 images images_splitncnn_0 images_splitncnn_1 images_splitncnn_2 images_splitncnn_3 | |
Crop Slice_4 1 1 images_splitncnn_3 647 -23309=1,0 -23310=1,2147483647 -23311=1,1 | |
Crop Slice_9 1 1 647 652 -23309=1,0 -23310=1,2147483647 -23311=1,2 | |
Crop Slice_14 1 1 images_splitncnn_2 657 -23309=1,0 -23310=1,2147483647 -23311=1,1 | |
Crop Slice_19 1 1 657 662 -23309=1,1 -23310=1,2147483647 -23311=1,2 | |
Crop Slice_24 1 1 images_splitncnn_1 667 -23309=1,1 -23310=1,2147483647 -23311=1,1 | |
Crop Slice_29 1 1 667 672 -23309=1,0 -23310=1,2147483647 -23311=1,2 | |
Crop Slice_34 1 1 images_splitncnn_0 677 -23309=1,1 -23310=1,2147483647 -23311=1,1 | |
Crop Slice_39 1 1 677 682 -23309=1,1 -23310=1,2147483647 -23311=1,2 | |
Concat Concat_40 4 1 652 672 662 682 683 0=0 | |
... | |
``` | |
* Change first number for 295 to 295 - 9 = 286 (since we will remove 10 layers and add 1 layers, total layers number should minus 9). | |
* Then remove 10 lines of code from Split to Concat, but remember the last but 2nd number: 683. | |
* Add YoloV5Focus layer After Input (using previous number 683): | |
``` | |
YoloV5Focus focus 1 1 images 683 | |
``` | |
After(just an example): | |
``` | |
286 328 | |
Input images 0 1 images | |
YoloV5Focus focus 1 1 images 683 | |
... | |
``` | |
### Step5 | |
Use ncnn_optimize to generate new param and bin: | |
```shell | |
# suppose you are still under ncnn/build/tools/ncnn dir. | |
../ncnnoptimize model.param model.bin yolox.param yolox.bin 65536 | |
``` | |
### Step6 | |
Copy or Move yolox.cpp file into ncnn/examples, modify the CMakeList.txt to add our implementation, then build. | |
### Step7 | |
Inference image with executable file yolox, enjoy the detect result: | |
```shell | |
./yolox demo.jpg | |
``` | |
### Bounus Solution: | |
As ncnn has released another model conversion tool called [pnnx](https://zhuanlan.zhihu.com/p/427620428) which directly finishs the pytorch2ncnn process via torchscript, we can also try on this. | |
```shell | |
# take yolox-s as an example | |
python3 tools/export_torchscript.py -n yolox-s -c /path/to/your_checkpoint_files | |
``` | |
Then a `yolox.torchscript.pt` will be generated. Copy this file to your pnnx build directory (pnnx also provides pre-built packages [here](https://github.com/pnnx/pnnx/releases/tag/20220720)). | |
```shell | |
# suppose you put the yolox.torchscript.pt in a seperate folder | |
./pnnx yolox/yolox.torchscript.pt inputshape=[1,3,640,640] | |
# for zsh users, please use inputshape='[1,3,640,640]' | |
``` | |
Still, as ncnn does not support `slice` op as we mentioned in [Step3](https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo/ncnn/cpp#step3). You will still see the warnings during this process. | |
Then multiple pnnx related files will be genreated in your yolox folder. Use `yolox.torchscript.ncnn.param` and `yolox.torchscript.ncnn.bin` as your converted model. | |
Then we can follow back to our [Step4](https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo/ncnn/cpp#step4) for the rest of our implementation. | |
## Acknowledgement | |
* [ncnn](https://github.com/Tencent/ncnn) | |