chendl's picture
Add application file
0b7b08a
# YOLOX-OpenVINO in Python
This tutorial includes a Python demo for OpenVINO, as well as some converted models.
### Download OpenVINO models.
| Model | Parameters | GFLOPs | Test Size | mAP | Weights |
|:------| :----: | :----: | :---: | :---: | :---: |
| [YOLOX-Nano](../../../exps/default/nano.py) | 0.91M | 1.08 | 416x416 | 25.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_nano_openvino.tar.gz) |
| [YOLOX-Tiny](../../../exps/default/yolox_tiny.py) | 5.06M | 6.45 | 416x416 |32.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_tiny_openvino.tar.gz) |
| [YOLOX-S](../../../exps/default/yolox_s.py) | 9.0M | 26.8 | 640x640 |40.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s_openvino.tar.gz) |
| [YOLOX-M](../../../exps/default/yolox_m.py) | 25.3M | 73.8 | 640x640 |47.2 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_m_openvino.tar.gz) |
| [YOLOX-L](../../../exps/default/yolox_l.py) | 54.2M | 155.6 | 640x640 |50.1 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_l_openvino.tar.gz) |
| [YOLOX-Darknet53](../../../exps/default/yolov3.py) | 63.72M | 185.3 | 640x640 |48.0 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_dark_openvino.tar.gz) |
| [YOLOX-X](../../../exps/default/yolox_x.py) | 99.1M | 281.9 | 640x640 |51.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_x_openvino.tar.gz) |
## Install OpenVINO Toolkit
Please visit [Openvino Homepage](https://docs.openvinotoolkit.org/latest/get_started_guides.html) for more details.
## Set up the Environment
### For Linux
**Option1. Set up the environment tempororally. You need to run this command everytime you start a new shell window.**
```shell
source /opt/intel/openvino_2021/bin/setupvars.sh
```
**Option2. Set up the environment permenantly.**
*Step1.* For Linux:
```shell
vim ~/.bashrc
```
*Step2.* Add the following line into your file:
```shell
source /opt/intel/openvino_2021/bin/setupvars.sh
```
*Step3.* Save and exit the file, then run:
```shell
source ~/.bashrc
```
## Convert model
1. Export ONNX model
Please refer to the [ONNX tutorial](https://github.com/Megvii-BaseDetection/YOLOX/demo/ONNXRuntime). **Note that you should set --opset to 10, otherwise your next step will fail.**
2. Convert ONNX to OpenVINO
``` shell
cd <INSTSLL_DIR>/openvino_2021/deployment_tools/model_optimizer
```
Install requirements for convert tool
```shell
sudo ./install_prerequisites/install_prerequisites_onnx.sh
```
Then convert model.
```shell
python3 mo.py --input_model <ONNX_MODEL> --input_shape <INPUT_SHAPE> [--data_type FP16]
```
For example:
```shell
python3 mo.py --input_model yolox.onnx --input_shape [1,3,640,640] --data_type FP16 --output_dir converted_output
```
## Demo
### python
```shell
python openvino_inference.py -m <XML_MODEL_PATH> -i <IMAGE_PATH>
```
or
```shell
python openvino_inference.py -m <XML_MODEL_PATH> -i <IMAGE_PATH> -o <OUTPUT_DIR> -s <SCORE_THR> -d <DEVICE>
```