chendl's picture
Add application file
0b7b08a
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import copy
import os
import cv2
import numpy as np
from pycocotools.coco import COCO
from ..dataloading import get_yolox_datadir
from .datasets_wrapper import CacheDataset, cache_read_img
def remove_useless_info(coco):
"""
Remove useless info in coco dataset. COCO object is modified inplace.
This function is mainly used for saving memory (save about 30% mem).
"""
if isinstance(coco, COCO):
dataset = coco.dataset
dataset.pop("info", None)
dataset.pop("licenses", None)
for img in dataset["images"]:
img.pop("license", None)
img.pop("coco_url", None)
img.pop("date_captured", None)
img.pop("flickr_url", None)
if "annotations" in coco.dataset:
for anno in coco.dataset["annotations"]:
anno.pop("segmentation", None)
class COCODataset(CacheDataset):
"""
COCO dataset class.
"""
def __init__(
self,
data_dir=None,
json_file="instances_train2017.json",
name="train2017",
img_size=(416, 416),
preproc=None,
cache=False,
cache_type="ram",
):
"""
COCO dataset initialization. Annotation data are read into memory by COCO API.
Args:
data_dir (str): dataset root directory
json_file (str): COCO json file name
name (str): COCO data name (e.g. 'train2017' or 'val2017')
img_size (int): target image size after pre-processing
preproc: data augmentation strategy
"""
if data_dir is None:
data_dir = os.path.join(get_yolox_datadir(), "COCO")
self.data_dir = data_dir
self.json_file = json_file
self.coco = COCO(os.path.join(self.data_dir, "annotations", self.json_file))
remove_useless_info(self.coco)
self.ids = self.coco.getImgIds()
self.num_imgs = len(self.ids)
self.class_ids = sorted(self.coco.getCatIds())
self.cats = self.coco.loadCats(self.coco.getCatIds())
self._classes = tuple([c["name"] for c in self.cats])
self.name = name
self.img_size = img_size
self.preproc = preproc
self.annotations = self._load_coco_annotations()
path_filename = [os.path.join(name, anno[3]) for anno in self.annotations]
super().__init__(
input_dimension=img_size,
num_imgs=self.num_imgs,
data_dir=data_dir,
cache_dir_name=f"cache_{name}",
path_filename=path_filename,
cache=cache,
cache_type=cache_type
)
def __len__(self):
return self.num_imgs
def _load_coco_annotations(self):
return [self.load_anno_from_ids(_ids) for _ids in self.ids]
def load_anno_from_ids(self, id_):
im_ann = self.coco.loadImgs(id_)[0]
width = im_ann["width"]
height = im_ann["height"]
anno_ids = self.coco.getAnnIds(imgIds=[int(id_)], iscrowd=False)
annotations = self.coco.loadAnns(anno_ids)
objs = []
for obj in annotations:
x1 = np.max((0, obj["bbox"][0]))
y1 = np.max((0, obj["bbox"][1]))
x2 = np.min((width, x1 + np.max((0, obj["bbox"][2]))))
y2 = np.min((height, y1 + np.max((0, obj["bbox"][3]))))
if obj["area"] > 0 and x2 >= x1 and y2 >= y1:
obj["clean_bbox"] = [x1, y1, x2, y2]
objs.append(obj)
num_objs = len(objs)
res = np.zeros((num_objs, 5))
for ix, obj in enumerate(objs):
cls = self.class_ids.index(obj["category_id"])
res[ix, 0:4] = obj["clean_bbox"]
res[ix, 4] = cls
r = min(self.img_size[0] / height, self.img_size[1] / width)
res[:, :4] *= r
img_info = (height, width)
resized_info = (int(height * r), int(width * r))
file_name = (
im_ann["file_name"]
if "file_name" in im_ann
else "{:012}".format(id_) + ".jpg"
)
return (res, img_info, resized_info, file_name)
def load_anno(self, index):
return self.annotations[index][0]
def load_resized_img(self, index):
img = self.load_image(index)
r = min(self.img_size[0] / img.shape[0], self.img_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.uint8)
return resized_img
def load_image(self, index):
file_name = self.annotations[index][3]
img_file = os.path.join(self.data_dir, self.name, file_name)
img = cv2.imread(img_file)
assert img is not None, f"file named {img_file} not found"
return img
@cache_read_img(use_cache=True)
def read_img(self, index):
return self.load_resized_img(index)
def pull_item(self, index):
id_ = self.ids[index]
label, origin_image_size, _, _ = self.annotations[index]
img = self.read_img(index)
return img, copy.deepcopy(label), origin_image_size, np.array([id_])
@CacheDataset.mosaic_getitem
def __getitem__(self, index):
"""
One image / label pair for the given index is picked up and pre-processed.
Args:
index (int): data index
Returns:
img (numpy.ndarray): pre-processed image
padded_labels (torch.Tensor): pre-processed label data.
The shape is :math:`[max_labels, 5]`.
each label consists of [class, xc, yc, w, h]:
class (float): class index.
xc, yc (float) : center of bbox whose values range from 0 to 1.
w, h (float) : size of bbox whose values range from 0 to 1.
info_img : tuple of h, w.
h, w (int): original shape of the image
img_id (int): same as the input index. Used for evaluation.
"""
img, target, img_info, img_id = self.pull_item(index)
if self.preproc is not None:
img, target = self.preproc(img, target, self.input_dim)
return img, target, img_info, img_id