chendl's picture
update cap
d42bf88
import torch
import more_itertools
from tqdm import tqdm
import json
import time
import os
import numpy as np
from transformers import LogitsProcessor, MinNewTokensLengthLogitsProcessor, ForcedEOSTokenLogitsProcessor
from PIL import Image
import cv2
class VisualLogitsProcessor(LogitsProcessor):
def __init__(self, tokenizer):
super().__init__()
self.tokenizer = tokenizer
self.object_token_id = self.tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]
self.prebox_token_id = self.tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
self.box_token_id = self.tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
self.previsual_token_id = self.tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
self.visual_token_id = self.tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
self.eos_token_id = self.tokenizer.encode(self.tokenizer.eos_token)[-1]
self.endofobject_token_id = self.tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
self.topk = 2
def __call__(self, input_ids, scores):
# print("decoding===>", self.tokenizer.decode(scores.sort(descending=True).indices.tolist()[0][:self.topk]))
# import pdb; pdb.set_trace()
if self.object_token_id in scores.sort(descending=True).indices.tolist()[0][1:self.topk] and self.eos_token_id not in scores.sort(descending=True).indices.tolist()[0][:self.topk] and (input_ids == self.object_token_id).sum() * 2 == (input_ids == self.endofobject_token_id).sum():
scores[0, self.object_token_id] = 1000
if input_ids[0, -1] == self.object_token_id and input_ids[0, -2] != self.prebox_token_id:
if (input_ids[0, :-1] == self.object_token_id).sum() != 0:
# print("generate a previsual token next")
scores[0, self.previsual_token_id] = 1000
elif input_ids[0, -1] == self.previsual_token_id or input_ids[0, -1] == self.visual_token_id:
# print("stop to run bbox generation for " + "previsual" if input_ids[0, -1] == self.previsual_token_id else "visual")
scores[0, self.eos_token_id] = 1000
elif input_ids[0, -1] == self.endofobject_token_id and input_ids[0, -2] != self.box_token_id:
# print("generate a visual token next")
scores[0, self.visual_token_id] = 1000
return scores
def prepare_batch_images(batch, image_processor):
batch_images = None
for b in batch:
b_image = image_processor(b["image"]).unsqueeze(0).unsqueeze(1).unsqueeze(0)
if batch_images is None:
batch_images = b_image
else:
batch_images = torch.cat([batch_images, b_image], dim=0)
return batch_images
# def captioner(
# model, tokenizer, image_ori, batch_images, input_ids, attention_mask, image_start_index_list, image_nums,
# added_bbox_list, debug=True):
# """Evaluate a model on COCO dataset.
# Returns:
# float: CIDEr score
#
# """
# visual_logits_processor = VisualLogitsProcessor(tokenizer)
# model.eval()
# # model.eval().cuda()
# lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
# media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
# endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
# pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
# bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
# previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
# visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
# box_token = "<|#box#|>"
# prebox_token = "<|#prebox#|>"
# endofobject_token = "<|#endofobject#|>"
# object_token = "<|#object#|>"
# ori_prompt_length = len(input_ids[0])
# have_prebox = False
# prompt = None
# out_image = None
# no_end = True
# for i in range(500):
# if no_end:
# batch_images = batch_images
# if prompt == None:
# input_ids = input_ids
# attention_mask = attention_mask
# else:
# encodings = tokenizer(
# [prompt],
# padding="longest",
# truncation=True,
# return_tensors="pt",
# max_length=2000,
# )
# attention_mask = encodings["attention_mask"]
# input_ids = encodings["input_ids"]
# image_start_index_list = image_start_index_list
# image_nums = image_nums
# if debug:
# print("input--->", tokenizer.decode(input_ids[0]))
# p1 = MinNewTokensLengthLogitsProcessor(
# prompt_length_to_skip=input_ids.shape[-1],
# min_new_tokens=5,
# eos_token_id=bos_token_id,
# )
# with torch.inference_mode():
# outputs = model.generate(
# batch_images,
# input_ids,
# attention_mask=attention_mask,
# max_new_tokens=20,
# # min_new_tokens=8,
# num_beams=1,
# # length_penalty=0,
# image_start_index_list=image_start_index_list,
# image_nums=image_nums,
# added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
# logits_processor_list=[p1, visual_logits_processor],
# )
# if debug:
# print("outputs--->", tokenizer.decode(outputs[0]))
# input_ids = encodings["input_ids"]
# attention_mask = encodings["attention_mask"]
# image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
# image_start_index_list = [[x] for x in image_start_index_list]
# image_nums = [1] * len(input_ids)
# if debug:
# print("get the visual bbox--->", tokenizer.decode(input_ids[0]))
# with torch.no_grad():
# outputs = model(
# vision_x=batch_images,
# lang_x=input_ids,
# attention_mask=attention_mask,
# image_nums=image_nums,
# image_start_index_list=image_start_index_list,
# added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
# add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
# )
# boxes = outputs["boxes"]
# scores = outputs["scores"]
# if debug:
# print("box num---->", len(boxes))
# # if not model.valid:
# # import pdb; pdb.set_trace()
# if boxes is not None:
# if is_visual:
# if have_prebox:
# added_bbox_list.pop()
# prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
# have_prebox = False
# if debug:
# print("find previsual and remove it--->", prompt)
# first_box = boxes[scores.argmax()]
# added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
# prompt = prompt[:-len(tokenizer.eos_token)]
# prompt += box_token + endofobject_token
# if debug:
# print("after inserting visual---->", prompt)
#
# else:
# import numpy as np
# import cv2
#
# # exit()
# pre_box = boxes[scores.argmax()]
# added_bbox_list += [torch.tensor(pre_box).unsqueeze(0) / 224]
# prompt = prompt[:-len(tokenizer.eos_token)]
# prompt += prebox_token + object_token
# have_prebox = True
# if debug:
# print("after inserting previsual---->", prompt)
# else:
# # if debug:
# # import pdb;pdb.set_trace()
# prompt = tokenizer.decode(outputs.clone()[0])
# if debug:
# print("before else---->", prompt)
# prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
# if debug:
# print("after else---->", prompt)
#
# else:
# no_end = False
# # break
# # print("outputs--->", tokenizer.decode(outputs[0]))
# outputs = outputs[:, ori_prompt_length:]
# outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].replace('"', "")
# open_cv_image = np.array(image_ori)
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# width = image_ori.width
# height = image_ori.height
# for i, pre_box in enumerate(added_bbox_list):
# open_cv_image = cv2.rectangle(open_cv_image, np.array(pre_box[0][:2]*[width,height]).astype(int), np.array(pre_box[0][2:]*[width,height]).astype(int),
# (0, 255, 0), i + 1)
# out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
# # new_predictions = [
# # postprocess_captioning_generation(out).replace('"', "")
# # for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
# # ]
# # import pdb; pdb.set_trace()
#
# return outputs, out_image
def captioner(
model, tokenizer, image_ori, batch_images, input_ids, attention_mask, image_start_index_list, image_nums,
added_bbox_list, debug=True):
"""Evaluate a model on COCO dataset.
Returns:
float: CIDEr score
"""
visual_logits_processor = VisualLogitsProcessor(tokenizer)
model.eval()
# model.eval().cuda()
lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
box_token = "<|#box#|>"
prebox_token = "<|#prebox#|>"
endofobject_token = "<|#endofobject#|>"
object_token = "<|#object#|>"
ori_prompt_length = len(input_ids[0])
have_prebox = False
prompt = None
out_image = None
no_end = True
for i in range(100):
if no_end:
batch_images = batch_images
if prompt == None:
input_ids = input_ids
attention_mask = attention_mask
else:
encodings = tokenizer(
[prompt],
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
attention_mask = encodings["attention_mask"]
input_ids = encodings["input_ids"]
image_start_index_list = image_start_index_list
image_nums = image_nums
if debug:
print("input--->", tokenizer.decode(input_ids[0]))
p1 = MinNewTokensLengthLogitsProcessor(
prompt_length_to_skip=input_ids.shape[-1],
min_new_tokens=5,
eos_token_id=bos_token_id,
)
with torch.inference_mode():
outputs = model.generate(
batch_images,
input_ids,
attention_mask=attention_mask,
max_new_tokens=20,
# min_new_tokens=8,
num_beams=1,
# length_penalty=0,
image_start_index_list=image_start_index_list,
image_nums=image_nums,
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
logits_processor_list=[p1, visual_logits_processor],
)
if debug:
print("outputs--->", tokenizer.decode(outputs[0]))
if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
prompt = tokenizer.decode(outputs.clone()[0])
is_visual = (outputs[0, -2] == visual_token_id)
batch_text = tokenizer.batch_decode(outputs[:, :-1])
encodings = tokenizer(
batch_text,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
if debug:
print("get the visual bbox--->", tokenizer.decode(input_ids[0]))
with torch.no_grad():
outputs = model(
vision_x=batch_images,
lang_x=input_ids,
attention_mask=attention_mask,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
)
boxes = outputs["boxes"]
scores = outputs["scores"]
if debug:
print("box num---->", len(boxes))
# if not model.valid:
# import pdb; pdb.set_trace()
if boxes is not None:
if is_visual:
if have_prebox:
added_bbox_list.pop()
prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
have_prebox = False
if debug:
print("find previsual and remove it--->", prompt)
first_box = boxes[scores.argmax()]
added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
prompt = prompt[:-len(tokenizer.eos_token)]
prompt += box_token + endofobject_token
if debug:
print("after inserting visual---->", prompt)
else:
import numpy as np
import cv2
# exit()
pre_box = boxes[scores.argmax()]
added_bbox_list += [torch.tensor(pre_box).unsqueeze(0) / 224]
prompt = prompt[:-len(tokenizer.eos_token)]
prompt += prebox_token + object_token
have_prebox = True
if debug:
print("after inserting previsual---->", prompt)
else:
# if debug:
# import pdb;pdb.set_trace()
prompt = tokenizer.decode(outputs.clone()[0])
if debug:
print("before else---->", prompt)
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
if debug:
print("after else---->", prompt)
else:
no_end = False
outputs = outputs[:, ori_prompt_length:]
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].replace('"', "")
open_cv_image = np.array(image_ori)
open_cv_image = open_cv_image[:, :, ::-1].copy()
width = image_ori.width
height = image_ori.height
for i, pre_box in enumerate(added_bbox_list):
print(pre_box)
open_cv_image = cv2.rectangle(open_cv_image, (np.array(pre_box[0][:2]) * [width, height]).astype(int),
(np.array(pre_box[0][2:]) * [width, height]).astype(int),
(0, 255, 0), i + 1)
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
# new_predictions = [
# postprocess_captioning_generation(out).replace('"', "")
# for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
# ]
# import pdb; pdb.set_trace()
return outputs, out_image