Spaces:
Runtime error
Runtime error
# Image Captioning (vision-encoder-text-decoder model) training example | |
The following example showcases how to finetune a vision-encoder-text-decoder model for image captioning | |
using the JAX/Flax backend, leveraging π€ Transformers library's [FlaxVisionEncoderDecoderModel](https://huggingface.co/docs/transformers/model_doc/visionencoderdecoder#transformers.FlaxVisionEncoderDecoderModel). | |
JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. | |
Models written in JAX/Flax are **immutable** and updated in a purely functional | |
way which enables simple and efficient model parallelism. | |
`run_image_captioning_flax.py` is a lightweight example of how to download and preprocess a dataset from the π€ Datasets | |
library or use your own files (jsonlines or csv), then fine-tune one of the architectures above on it. | |
For custom datasets in `jsonlines` format please see: https://huggingface.co/docs/datasets/loading_datasets.html#json-files and you also will find examples of these below. | |
### Download COCO dataset (2017) | |
This example uses COCO dataset (2017) through a custom dataset script, which requires users to manually download the | |
COCO dataset before training. | |
```bash | |
mkdir data | |
cd data | |
wget http://images.cocodataset.org/zips/train2017.zip | |
wget http://images.cocodataset.org/zips/val2017.zip | |
wget http://images.cocodataset.org/zips/test2017.zip | |
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip | |
wget http://images.cocodataset.org/annotations/image_info_test2017.zip | |
cd .. | |
``` | |
### Create a model from a vision encoder model and a text decoder model | |
Next, we create a [FlaxVisionEncoderDecoderModel](https://huggingface.co/docs/transformers/model_doc/visionencoderdecoder#transformers.FlaxVisionEncoderDecoderModel) instance from a pre-trained vision encoder ([ViT](https://huggingface.co/docs/transformers/model_doc/vit#transformers.FlaxViTModel)) and a pre-trained text decoder ([GPT2](https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.FlaxGPT2Model)): | |
```bash | |
python3 create_model_from_encoder_decoder_models.py \ | |
--output_dir model \ | |
--encoder_model_name_or_path google/vit-base-patch16-224-in21k \ | |
--decoder_model_name_or_path gpt2 | |
``` | |
### Train the model | |
Finally, we can run the example script to train the model: | |
```bash | |
python3 run_image_captioning_flax.py \ | |
--output_dir ./image-captioning-training-results \ | |
--model_name_or_path model \ | |
--dataset_name ydshieh/coco_dataset_script \ | |
--dataset_config_name=2017 \ | |
--data_dir $PWD/data \ | |
--image_column image_path \ | |
--caption_column caption \ | |
--do_train --do_eval --predict_with_generate \ | |
--num_train_epochs 1 \ | |
--eval_steps 500 \ | |
--learning_rate 3e-5 --warmup_steps 0 \ | |
--per_device_train_batch_size 32 \ | |
--per_device_eval_batch_size 32 \ | |
--overwrite_output_dir \ | |
--max_target_length 32 \ | |
--num_beams 8 \ | |
--preprocessing_num_workers 16 \ | |
--logging_steps 10 \ | |
--block_size 16384 \ | |
--push_to_hub | |
``` | |
This should finish in about 1h30 on Cloud TPU, with validation loss and ROUGE2 score of 2.0153 and 14.64 respectively | |
after 1 epoch. Training statistics can be accessed on [Models](https://huggingface.co/ydshieh/image-captioning-training-results/tensorboard). | |