Spaces:
Runtime error
Runtime error
compositional_test
/
transformers
/examples
/research_projects
/quantization-qdqbert
/evaluate-hf-trt-qa.py
# coding=utf-8 | |
# Copyright 2021 NVIDIA Corporation. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet).""" | |
import argparse | |
import logging | |
import os | |
import time | |
import timeit | |
import datasets | |
import numpy as np | |
import pycuda.autoinit # noqa: F401 | |
import pycuda.driver as cuda | |
import tensorrt as trt | |
import torch | |
from absl import logging as absl_logging | |
from accelerate import Accelerator | |
from datasets import load_dataset, load_metric | |
from torch.utils.data import DataLoader | |
from utils_qa import postprocess_qa_predictions | |
import transformers | |
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed | |
from transformers.trainer_pt_utils import nested_concat, nested_truncate | |
TRT_LOGGER = trt.Logger(trt.Logger.WARNING) | |
absl_logger = absl_logging.get_absl_logger() | |
absl_logger.setLevel(logging.WARNING) | |
logger = logging.getLogger(__name__) | |
parser = argparse.ArgumentParser() | |
# Required parameters | |
parser.add_argument( | |
"--onnx_model_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to ONNX model: ", | |
) | |
parser.add_argument( | |
"--output_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The output directory where the model checkpoints and predictions will be written.", | |
) | |
# Other parameters | |
parser.add_argument( | |
"--tokenizer_name", | |
default="", | |
type=str, | |
required=True, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--version_2_with_negative", | |
action="store_true", | |
help="If true, the SQuAD examples contain some that do not have an answer.", | |
) | |
parser.add_argument( | |
"--null_score_diff_threshold", | |
type=float, | |
default=0.0, | |
help="If null_score - best_non_null is greater than the threshold predict null.", | |
) | |
parser.add_argument( | |
"--max_seq_length", | |
default=384, | |
type=int, | |
help=( | |
"The maximum total input sequence length after WordPiece tokenization. Sequences " | |
"longer than this will be truncated, and sequences shorter than this will be padded." | |
), | |
) | |
parser.add_argument( | |
"--doc_stride", | |
default=128, | |
type=int, | |
help="When splitting up a long document into chunks, how much stride to take between chunks.", | |
) | |
parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") | |
parser.add_argument( | |
"--n_best_size", | |
default=20, | |
type=int, | |
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", | |
) | |
parser.add_argument( | |
"--max_answer_length", | |
default=30, | |
type=int, | |
help=( | |
"The maximum length of an answer that can be generated. This is needed because the start " | |
"and end predictions are not conditioned on one another." | |
), | |
) | |
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
default=None, | |
required=True, | |
help="The name of the dataset to use (via the datasets library).", | |
) | |
parser.add_argument( | |
"--dataset_config_name", | |
type=str, | |
default=None, | |
help="The configuration name of the dataset to use (via the datasets library).", | |
) | |
parser.add_argument( | |
"--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." | |
) | |
parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") | |
parser.add_argument( | |
"--fp16", | |
action="store_true", | |
help="Whether to use 16-bit (mixed) precision instead of 32-bit", | |
) | |
parser.add_argument( | |
"--int8", | |
action="store_true", | |
help="Whether to use INT8", | |
) | |
args = parser.parse_args() | |
if args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) | |
else: | |
raise ValueError( | |
"You are instantiating a new tokenizer from scratch. This is not supported by this script." | |
"You can do it from another script, save it, and load it from here, using --tokenizer_name." | |
) | |
logger.info("Training/evaluation parameters %s", args) | |
args.eval_batch_size = args.per_device_eval_batch_size | |
INPUT_SHAPE = (args.eval_batch_size, args.max_seq_length) | |
# TRT Engine properties | |
STRICT_TYPES = True | |
engine_name = "temp_engine/bert-fp32.engine" | |
if args.fp16: | |
engine_name = "temp_engine/bert-fp16.engine" | |
if args.int8: | |
engine_name = "temp_engine/bert-int8.engine" | |
# import ONNX file | |
if not os.path.exists("temp_engine"): | |
os.makedirs("temp_engine") | |
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) | |
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( | |
network, TRT_LOGGER | |
) as parser: | |
with open(args.onnx_model_path, "rb") as model: | |
if not parser.parse(model.read()): | |
for error in range(parser.num_errors): | |
print(parser.get_error(error)) | |
# Query input names and shapes from parsed TensorRT network | |
network_inputs = [network.get_input(i) for i in range(network.num_inputs)] | |
input_names = [_input.name for _input in network_inputs] # ex: ["actual_input1"] | |
with builder.create_builder_config() as config: | |
config.max_workspace_size = 1 << 50 | |
if STRICT_TYPES: | |
config.set_flag(trt.BuilderFlag.STRICT_TYPES) | |
if args.fp16: | |
config.set_flag(trt.BuilderFlag.FP16) | |
if args.int8: | |
config.set_flag(trt.BuilderFlag.INT8) | |
profile = builder.create_optimization_profile() | |
config.add_optimization_profile(profile) | |
for i in range(len(input_names)): | |
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) | |
engine = builder.build_engine(network, config) | |
# serialize_engine and store in file (can be directly loaded and deserialized): | |
with open(engine_name, "wb") as f: | |
f.write(engine.serialize()) | |
# run inference with TRT | |
def model_infer(inputs, context, d_inputs, h_output0, h_output1, d_output0, d_output1, stream): | |
input_ids = np.asarray(inputs["input_ids"], dtype=np.int32) | |
attention_mask = np.asarray(inputs["attention_mask"], dtype=np.int32) | |
token_type_ids = np.asarray(inputs["token_type_ids"], dtype=np.int32) | |
# Copy inputs | |
cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), stream) | |
cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), stream) | |
cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), stream) | |
# start time | |
start_time = time.time() | |
# Run inference | |
context.execute_async( | |
bindings=[int(d_inp) for d_inp in d_inputs] + [int(d_output0), int(d_output1)], stream_handle=stream.handle | |
) | |
# Transfer predictions back from GPU | |
cuda.memcpy_dtoh_async(h_output0, d_output0, stream) | |
cuda.memcpy_dtoh_async(h_output1, d_output1, stream) | |
# Synchronize the stream and take time | |
stream.synchronize() | |
# end time | |
end_time = time.time() | |
infer_time = end_time - start_time | |
outputs = (h_output0, h_output1) | |
# print(outputs) | |
return outputs, infer_time | |
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example. | |
accelerator = Accelerator() | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
# Setup logging, we only want one process per machine to log things on the screen. | |
# accelerator.is_local_main_process is only True for one process per machine. | |
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) | |
if accelerator.is_local_main_process: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
# 'text' is found. You can easily tweak this behavior (see below). | |
if args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) | |
else: | |
raise ValueError("Evaluation requires a dataset name") | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# Preprocessing the datasets. | |
# Preprocessing is slighlty different for training and evaluation. | |
column_names = raw_datasets["validation"].column_names | |
question_column_name = "question" if "question" in column_names else column_names[0] | |
context_column_name = "context" if "context" in column_names else column_names[1] | |
answer_column_name = "answers" if "answers" in column_names else column_names[2] | |
# Padding side determines if we do (question|context) or (context|question). | |
pad_on_right = tokenizer.padding_side == "right" | |
if args.max_seq_length > tokenizer.model_max_length: | |
logger.warning( | |
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" | |
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
) | |
max_seq_length = min(args.max_seq_length, tokenizer.model_max_length) | |
# Validation preprocessing | |
def prepare_validation_features(examples): | |
# Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
# left whitespace | |
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
# in one example possible giving several features when a context is long, each of those features having a | |
# context that overlaps a bit the context of the previous feature. | |
tokenized_examples = tokenizer( | |
examples[question_column_name if pad_on_right else context_column_name], | |
examples[context_column_name if pad_on_right else question_column_name], | |
truncation="only_second" if pad_on_right else "only_first", | |
max_length=max_seq_length, | |
stride=args.doc_stride, | |
return_overflowing_tokens=True, | |
return_offsets_mapping=True, | |
padding="max_length", | |
) | |
# Since one example might give us several features if it has a long context, we need a map from a feature to | |
# its corresponding example. This key gives us just that. | |
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the | |
# corresponding example_id and we will store the offset mappings. | |
tokenized_examples["example_id"] = [] | |
for i in range(len(tokenized_examples["input_ids"])): | |
# Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
sequence_ids = tokenized_examples.sequence_ids(i) | |
context_index = 1 if pad_on_right else 0 | |
# One example can give several spans, this is the index of the example containing this span of text. | |
sample_index = sample_mapping[i] | |
tokenized_examples["example_id"].append(examples["id"][sample_index]) | |
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token | |
# position is part of the context or not. | |
tokenized_examples["offset_mapping"][i] = [ | |
(o if sequence_ids[k] == context_index else None) | |
for k, o in enumerate(tokenized_examples["offset_mapping"][i]) | |
] | |
return tokenized_examples | |
eval_examples = raw_datasets["validation"] | |
# Validation Feature Creation | |
eval_dataset = eval_examples.map( | |
prepare_validation_features, | |
batched=True, | |
num_proc=args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not args.overwrite_cache, | |
desc="Running tokenizer on validation dataset", | |
) | |
data_collator = default_data_collator | |
eval_dataset_for_model = eval_dataset.remove_columns(["example_id", "offset_mapping"]) | |
eval_dataloader = DataLoader( | |
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size | |
) | |
# Post-processing: | |
def post_processing_function(examples, features, predictions, stage="eval"): | |
# Post-processing: we match the start logits and end logits to answers in the original context. | |
predictions = postprocess_qa_predictions( | |
examples=examples, | |
features=features, | |
predictions=predictions, | |
version_2_with_negative=args.version_2_with_negative, | |
n_best_size=args.n_best_size, | |
max_answer_length=args.max_answer_length, | |
null_score_diff_threshold=args.null_score_diff_threshold, | |
output_dir=args.output_dir, | |
prefix=stage, | |
) | |
# Format the result to the format the metric expects. | |
if args.version_2_with_negative: | |
formatted_predictions = [ | |
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() | |
] | |
else: | |
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] | |
references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] | |
return EvalPrediction(predictions=formatted_predictions, label_ids=references) | |
metric = load_metric("squad_v2" if args.version_2_with_negative else "squad") | |
# Evaluation! | |
logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) | |
with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( | |
f.read() | |
) as engine, engine.create_execution_context() as context: | |
# setup for TRT inferrence | |
for i in range(len(input_names)): | |
context.set_binding_shape(i, INPUT_SHAPE) | |
assert context.all_binding_shapes_specified | |
def binding_nbytes(binding): | |
return trt.volume(engine.get_binding_shape(binding)) * engine.get_binding_dtype(binding).itemsize | |
# Allocate device memory for inputs and outputs. | |
d_inputs = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] | |
# Allocate output buffer | |
h_output0 = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.float32) | |
h_output1 = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.float32) | |
d_output0 = cuda.mem_alloc(h_output0.nbytes) | |
d_output1 = cuda.mem_alloc(h_output1.nbytes) | |
# Create a stream in which to copy inputs/outputs and run inference. | |
stream = cuda.Stream() | |
# Evaluation | |
logger.info("***** Running Evaluation *****") | |
logger.info(f" Num examples = {len(eval_dataset)}") | |
logger.info(f" Batch size = {args.per_device_eval_batch_size}") | |
total_time = 0.0 | |
niter = 0 | |
start_time = timeit.default_timer() | |
all_preds = None | |
for step, batch in enumerate(eval_dataloader): | |
outputs, infer_time = model_infer(batch, context, d_inputs, h_output0, h_output1, d_output0, d_output1, stream) | |
total_time += infer_time | |
niter += 1 | |
start_logits, end_logits = outputs | |
start_logits = torch.tensor(start_logits) | |
end_logits = torch.tensor(end_logits) | |
# necessary to pad predictions and labels for being gathered | |
start_logits = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) | |
end_logits = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) | |
logits = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) | |
all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) | |
if all_preds is not None: | |
all_preds = nested_truncate(all_preds, len(eval_dataset)) | |
evalTime = timeit.default_timer() - start_time | |
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) | |
# Inference time from TRT | |
logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) | |
logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) | |
logger.info("Total Number of Inference = %d", niter) | |
prediction = post_processing_function(eval_examples, eval_dataset, all_preds) | |
eval_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) | |
logger.info(f"Evaluation metrics: {eval_metric}") | |