Spaces:
Runtime error
Runtime error
compositional_test
/
transformers
/examples
/research_projects
/quantization-qdqbert
/quant_trainer.py
# coding=utf-8 | |
# Copyright 2021 NVIDIA Corporation. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Helper functions for training models with pytorch-quantization""" | |
import logging | |
import re | |
import pytorch_quantization | |
import pytorch_quantization.nn as quant_nn | |
import torch | |
from pytorch_quantization import calib | |
from pytorch_quantization.tensor_quant import QuantDescriptor | |
logger = logging.getLogger(__name__) | |
name_width = 50 # max width of layer names | |
qname_width = 70 # max width of quantizer names | |
# ========================================== Quant Trainer API ========================================== | |
def add_arguments(parser): | |
"""Add arguments to parser for functions defined in quant_trainer.""" | |
group = parser.add_argument_group("quant_trainer arguments") | |
group.add_argument("--wprec", type=int, default=8, help="weight precision") | |
group.add_argument("--aprec", type=int, default=8, help="activation precision") | |
group.add_argument("--quant-per-tensor", action="store_true", help="per tensor weight scaling") | |
group.add_argument("--quant-disable", action="store_true", help="disable all quantizers") | |
group.add_argument("--quant-disable-embeddings", action="store_true", help="disable all embeddings quantizers") | |
group.add_argument("--quant-disable-keyword", type=str, nargs="+", help="disable quantizers by keyword") | |
group.add_argument("--quant-disable-layer-module", type=str, help="disable quantizers by keyword under layer.\d+.") | |
group.add_argument("--quant-enable-layer-module", type=str, help="enable quantizers by keyword under layer.\d+.") | |
group.add_argument("--calibrator", default="max", help="which quantization range calibrator to use") | |
group.add_argument("--percentile", default=None, type=float, help="percentile for PercentileCalibrator") | |
group.add_argument("--fuse-qkv", action="store_true", help="use the same scale factor for qkv") | |
group.add_argument("--clip-gelu", metavar="N", type=float, help="clip gelu output maximum value to N") | |
group.add_argument( | |
"--recalibrate-weights", | |
action="store_true", | |
help=( | |
"recalibrate weight amaxes by taking the max of the weights." | |
" amaxes will be computed with the current quantization granularity (axis)." | |
), | |
) | |
def set_default_quantizers(args): | |
"""Set default quantizers before creating the model.""" | |
if args.calibrator == "max": | |
calib_method = "max" | |
elif args.calibrator == "percentile": | |
if args.percentile is None: | |
raise ValueError("Specify --percentile when using percentile calibrator") | |
calib_method = "histogram" | |
elif args.calibrator == "mse": | |
calib_method = "histogram" | |
else: | |
raise ValueError(f"Invalid calibrator {args.calibrator}") | |
input_desc = QuantDescriptor(num_bits=args.aprec, calib_method=calib_method) | |
weight_desc = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,))) | |
quant_nn.QuantLinear.set_default_quant_desc_input(input_desc) | |
quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc) | |
def configure_model(model, args, calib=False, eval=False): | |
"""Function called before the training loop.""" | |
logger.info("Configuring Model for Quantization") | |
logger.info(f"using quantization package {pytorch_quantization.__file__}") | |
if not calib: | |
if args.quant_disable_embeddings: | |
set_quantizer_by_name(model, ["embeddings"], which="weight", _disabled=True) | |
if args.quant_disable: | |
set_quantizer_by_name(model, [""], _disabled=True) | |
if args.quant_disable_keyword: | |
set_quantizer_by_name(model, args.quant_disable_keyword, _disabled=True) | |
if args.quant_disable_layer_module: | |
set_quantizer_by_name(model, ["layer.\d+." + args.quant_disable_layer_module], _disabled=True) | |
if args.quant_enable_layer_module: | |
set_quantizer_by_name(model, ["layer.\d+." + args.quant_enable_layer_module], _disabled=False) | |
if args.recalibrate_weights: | |
recalibrate_weights(model) | |
if args.fuse_qkv: | |
fuse_qkv(model, args) | |
if args.clip_gelu: | |
clip_gelu(model, args.clip_gelu) | |
# if args.local_rank in [-1, 0] and not calib: | |
print_quant_summary(model) | |
def enable_calibration(model): | |
"""Enable calibration of all *_input_quantizer modules in model.""" | |
logger.info("Enabling Calibration") | |
for name, module in model.named_modules(): | |
if name.endswith("_quantizer"): | |
if module._calibrator is not None: | |
module.disable_quant() | |
module.enable_calib() | |
else: | |
module.disable() | |
logger.info(f"{name:80}: {module}") | |
def finish_calibration(model, args): | |
"""Disable calibration and load amax for all "*_input_quantizer modules in model.""" | |
logger.info("Loading calibrated amax") | |
for name, module in model.named_modules(): | |
if name.endswith("_quantizer"): | |
if module._calibrator is not None: | |
if isinstance(module._calibrator, calib.MaxCalibrator): | |
module.load_calib_amax() | |
else: | |
module.load_calib_amax("percentile", percentile=args.percentile) | |
module.enable_quant() | |
module.disable_calib() | |
else: | |
module.enable() | |
model.cuda() | |
print_quant_summary(model) | |
# ========================================== Helper Function ========================================== | |
def fuse_qkv(model, args): | |
"""Adjust quantization ranges to match an implementation where the QKV projections are implemented with a single GEMM. | |
Force the weight and output scale factors to match by taking the max of (Q,K,V). | |
""" | |
def fuse3(qq, qk, qv): | |
for mod in [qq, qk, qv]: | |
if not hasattr(mod, "_amax"): | |
print(" WARNING: NO AMAX BUFFER") | |
return | |
q = qq._amax.detach().item() | |
k = qk._amax.detach().item() | |
v = qv._amax.detach().item() | |
amax = max(q, k, v) | |
qq._amax.fill_(amax) | |
qk._amax.fill_(amax) | |
qv._amax.fill_(amax) | |
logger.info(f" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}") | |
for name, mod in model.named_modules(): | |
if name.endswith(".attention.self"): | |
logger.info(f"FUSE_QKV: {name:{name_width}}") | |
fuse3(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer) | |
if args.quant_per_tensor: | |
fuse3(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer) | |
def clip_gelu(model, maxval): | |
"""Clip activations generated by GELU to maxval when quantized. | |
Implemented by adjusting the amax of the following input_quantizer. | |
""" | |
for name, mod in model.named_modules(): | |
if name.endswith(".output.dense") and not name.endswith("attention.output.dense"): | |
amax_init = mod._input_quantizer._amax.data.detach().item() | |
mod._input_quantizer._amax.data.detach().clamp_(max=maxval) | |
amax = mod._input_quantizer._amax.data.detach().item() | |
logger.info(f"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}") | |
def expand_amax(model): | |
"""Expand per-tensor amax to be per channel, where each channel is assigned the per-tensor amax.""" | |
for name, mod in model.named_modules(): | |
if hasattr(mod, "_weight_quantizer") and mod._weight_quantizer.axis is not None: | |
k = mod.weight.shape[0] | |
amax = mod._weight_quantizer._amax.detach() | |
mod._weight_quantizer._amax = torch.ones(k, dtype=amax.dtype, device=amax.device) * amax | |
print(f"expanding {name} {amax} -> {mod._weight_quantizer._amax}") | |
def recalibrate_weights(model): | |
"""Performs max calibration on the weights and updates amax.""" | |
for name, mod in model.named_modules(): | |
if hasattr(mod, "_weight_quantizer"): | |
if not hasattr(mod.weight_quantizer, "_amax"): | |
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER") | |
continue | |
# determine which axes to reduce across | |
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) | |
axis_set = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis) | |
reduce_axis = set(range(len(mod.weight.size()))) - axis_set | |
amax = pytorch_quantization.utils.reduce_amax(mod.weight, axis=reduce_axis, keepdims=True).detach() | |
logger.info(f"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}") | |
mod._weight_quantizer._amax = amax | |
def print_model_summary(model, name_width=25, line_width=180, ignore=None): | |
"""Print model quantization configuration.""" | |
if ignore is None: | |
ignore = [] | |
elif not isinstance(ignore, list): | |
ignore = [ignore] | |
name_width = 0 | |
for name, mod in model.named_modules(): | |
if not hasattr(mod, "weight"): | |
continue | |
name_width = max(name_width, len(name)) | |
for name, mod in model.named_modules(): | |
input_q = getattr(mod, "_input_quantizer", None) | |
weight_q = getattr(mod, "_weight_quantizer", None) | |
if not hasattr(mod, "weight"): | |
continue | |
if type(mod) in ignore: | |
continue | |
if [True for s in ignore if type(s) is str and s in name]: | |
continue | |
act_str = f"Act:{input_q.extra_repr()}" | |
wgt_str = f"Wgt:{weight_q.extra_repr()}" | |
s = f"{name:{name_width}} {act_str} {wgt_str}" | |
if len(s) <= line_width: | |
logger.info(s) | |
else: | |
logger.info(f"{name:{name_width}} {act_str}") | |
logger.info(f'{" ":{name_width}} {wgt_str}') | |
def print_quant_summary(model): | |
"""Print summary of all quantizer modules in the model.""" | |
count = 0 | |
for name, mod in model.named_modules(): | |
if isinstance(mod, pytorch_quantization.nn.TensorQuantizer): | |
print(f"{name:80} {mod}") | |
count += 1 | |
print(f"{count} TensorQuantizers found in model") | |
def set_quantizer(name, mod, quantizer, k, v): | |
"""Set attributes for mod.quantizer.""" | |
quantizer_mod = getattr(mod, quantizer, None) | |
if quantizer_mod is not None: | |
assert hasattr(quantizer_mod, k) | |
setattr(quantizer_mod, k, v) | |
else: | |
logger.warning(f"{name} has no {quantizer}") | |
def set_quantizers(name, mod, which="both", **kwargs): | |
"""Set quantizer attributes for mod.""" | |
s = f"Warning: changing {which} quantizers of {name:{qname_width}}" | |
for k, v in kwargs.items(): | |
s += f" {k}={v}" | |
if which in ["input", "both"]: | |
set_quantizer(name, mod, "_input_quantizer", k, v) | |
if which in ["weight", "both"]: | |
set_quantizer(name, mod, "_weight_quantizer", k, v) | |
logger.info(s) | |
def set_quantizer_by_name(model, names, **kwargs): | |
"""Set quantizer attributes for layers where name contains a substring in names.""" | |
for name, mod in model.named_modules(): | |
if hasattr(mod, "_input_quantizer") or hasattr(mod, "_weight_quantizer"): | |
for n in names: | |
if re.search(n, name): | |
set_quantizers(name, mod, **kwargs) | |
elif name.endswith("_quantizer"): | |
for n in names: | |
if re.search(n, name): | |
s = f"Warning: changing {name:{name_width}}" | |
for k, v in kwargs.items(): | |
s += f" {k}={v}" | |
setattr(mod, k, v) | |
logger.info(s) | |