Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from typing import Dict, List, Optional, Union | |
import numpy as np | |
from transformers.testing_utils import require_torch, require_vision | |
from transformers.utils import is_torch_available, is_vision_available | |
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs | |
if is_torch_available(): | |
import torch | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import BridgeTowerImageProcessor | |
class BridgeTowerImageProcessingTester(unittest.TestCase): | |
def __init__( | |
self, | |
parent, | |
do_resize: bool = True, | |
size: Dict[str, int] = None, | |
size_divisor: int = 32, | |
do_rescale: bool = True, | |
rescale_factor: Union[int, float] = 1 / 255, | |
do_normalize: bool = True, | |
do_center_crop: bool = True, | |
image_mean: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073], | |
image_std: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711], | |
do_pad: bool = True, | |
batch_size=7, | |
min_resolution=30, | |
max_resolution=400, | |
num_channels=3, | |
): | |
self.parent = parent | |
self.do_resize = do_resize | |
self.size = size if size is not None else {"shortest_edge": 288} | |
self.size_divisor = size_divisor | |
self.do_rescale = do_rescale | |
self.rescale_factor = rescale_factor | |
self.do_normalize = do_normalize | |
self.do_center_crop = do_center_crop | |
self.image_mean = image_mean | |
self.image_std = image_std | |
self.do_pad = do_pad | |
self.batch_size = batch_size | |
self.num_channels = num_channels | |
self.min_resolution = min_resolution | |
self.max_resolution = max_resolution | |
def prepare_image_processor_dict(self): | |
return { | |
"image_mean": self.image_mean, | |
"image_std": self.image_std, | |
"do_normalize": self.do_normalize, | |
"do_resize": self.do_resize, | |
"size": self.size, | |
"size_divisor": self.size_divisor, | |
} | |
def get_expected_values(self, image_inputs, batched=False): | |
""" | |
This function computes the expected height and width when providing images to BridgeTowerImageProcessor, | |
assuming do_resize is set to True with a scalar size and size_divisor. | |
""" | |
if not batched: | |
size = self.size["shortest_edge"] | |
image = image_inputs[0] | |
if isinstance(image, Image.Image): | |
w, h = image.size | |
else: | |
h, w = image.shape[1], image.shape[2] | |
scale = size / min(w, h) | |
if h < w: | |
newh, neww = size, scale * w | |
else: | |
newh, neww = scale * h, size | |
max_size = int((1333 / 800) * size) | |
if max(newh, neww) > max_size: | |
scale = max_size / max(newh, neww) | |
newh = newh * scale | |
neww = neww * scale | |
newh, neww = int(newh + 0.5), int(neww + 0.5) | |
expected_height, expected_width = ( | |
newh // self.size_divisor * self.size_divisor, | |
neww // self.size_divisor * self.size_divisor, | |
) | |
else: | |
expected_values = [] | |
for image in image_inputs: | |
expected_height, expected_width = self.get_expected_values([image]) | |
expected_values.append((expected_height, expected_width)) | |
expected_height = max(expected_values, key=lambda item: item[0])[0] | |
expected_width = max(expected_values, key=lambda item: item[1])[1] | |
return expected_height, expected_width | |
class BridgeTowerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase): | |
image_processing_class = BridgeTowerImageProcessor if is_vision_available() else None | |
def setUp(self): | |
self.image_processor_tester = BridgeTowerImageProcessingTester(self) | |
def image_processor_dict(self): | |
return self.image_processor_tester.prepare_image_processor_dict() | |
def test_image_processor_properties(self): | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
self.assertTrue(hasattr(image_processing, "image_mean")) | |
self.assertTrue(hasattr(image_processing, "image_std")) | |
self.assertTrue(hasattr(image_processing, "do_normalize")) | |
self.assertTrue(hasattr(image_processing, "do_resize")) | |
self.assertTrue(hasattr(image_processing, "size")) | |
self.assertTrue(hasattr(image_processing, "size_divisor")) | |
def test_batch_feature(self): | |
pass | |
def test_call_pil(self): | |
# Initialize feature_extractor | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# create random PIL images | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False) | |
for image in image_inputs: | |
self.assertIsInstance(image, Image.Image) | |
# Test not batched input | |
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) | |
self.assertEqual( | |
encoded_images.shape, | |
(1, self.image_processor_tester.num_channels, expected_height, expected_width), | |
) | |
# Test batched | |
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) | |
self.assertEqual( | |
encoded_images.shape, | |
( | |
self.image_processor_tester.batch_size, | |
self.image_processor_tester.num_channels, | |
expected_height, | |
expected_width, | |
), | |
) | |
def test_call_numpy(self): | |
# Initialize feature_extractor | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# create random numpy tensors | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True) | |
for image in image_inputs: | |
self.assertIsInstance(image, np.ndarray) | |
# Test not batched input | |
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) | |
self.assertEqual( | |
encoded_images.shape, | |
(1, self.image_processor_tester.num_channels, expected_height, expected_width), | |
) | |
# Test batched | |
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) | |
self.assertEqual( | |
encoded_images.shape, | |
( | |
self.image_processor_tester.batch_size, | |
self.image_processor_tester.num_channels, | |
expected_height, | |
expected_width, | |
), | |
) | |
def test_call_pytorch(self): | |
# Initialize feature_extractor | |
image_processing = self.image_processing_class(**self.image_processor_dict) | |
# create random PyTorch tensors | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) | |
for image in image_inputs: | |
self.assertIsInstance(image, torch.Tensor) | |
# Test not batched input | |
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values | |
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs) | |
self.assertEqual( | |
encoded_images.shape, | |
(1, self.image_processor_tester.num_channels, expected_height, expected_width), | |
) | |
# Test batched | |
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values | |
expected_height, expected_width = self.image_processor_tester.get_expected_values(image_inputs, batched=True) | |
self.assertEqual( | |
encoded_images.shape, | |
( | |
self.image_processor_tester.batch_size, | |
self.image_processor_tester.num_channels, | |
expected_height, | |
expected_width, | |
), | |
) | |
def test_equivalence_pad_and_create_pixel_mask(self): | |
# Initialize feature_extractors | |
image_processing_1 = self.image_processing_class(**self.image_processor_dict) | |
image_processing_2 = self.image_processing_class(do_resize=False, do_normalize=False, do_rescale=False) | |
# create random PyTorch tensors | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) | |
for image in image_inputs: | |
self.assertIsInstance(image, torch.Tensor) | |
# Test whether the method "pad_and_return_pixel_mask" and calling the image processor return the same tensors | |
encoded_images_with_method = image_processing_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt") | |
encoded_images = image_processing_2(image_inputs, return_tensors="pt") | |
self.assertTrue( | |
torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4) | |
) | |
self.assertTrue( | |
torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4) | |
) | |