Spaces:
Runtime error
Runtime error
File size: 10,806 Bytes
95a3ca6 010e32d 95a3ca6 b7a34b6 95a3ca6 b7a34b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# imports
import os
import sys
import gradio as gr
import whisper
import torch
import traceback
import shutil
import yaml
import re
from pydub import AudioSegment
from huggingface_hub import snapshot_download
import json
import requests
import wave
from pynvml import *
import time
import mRASPloader
torch.cuda.empty_cache()
# TTS header and url
headers = {"Authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX2lkIjoiYTI5NDFhMmEtYzA5ZS00YTcyLWI5ZGItODM5ODEzZDIwMGEwIiwidHlwZSI6ImFwaV90b2tlbiJ9.StBap5nQtNqjh1BMz9DledR5tg5FTWdUMVBrDwY6DjY"}
url ="https://api.edenai.run/v2/audio/text_to_speech"
# the model we are using for ASR, options are small, medium, large and largev2 (large and largev2 don't fit on huggingface cpu)
model = whisper.load_model("medium")
# A table to look up all the languages
language_id_lookup = {
"Arabic" : "ar",
"English" : "en",
"Chinese" : "zh",
"Spanish" : "es",
"Russian" : "ru",
"French" : "fr",
"German" : "de",
"Italian" : "it",
"Netherlands": "nl",
"Portuguese": "pt",
"Romanian" : "ro",
}
# A lookup table for ConST
LANG_GEN_SETUPS = {
"de": {"beam": 10, "lenpen": 0.7},
"es": {"beam": 10, "lenpen": 0.1},
"fr": {"beam": 10, "lenpen": 1.0},
"it": {"beam": 10, "lenpen": 0.5},
"nl": {"beam": 10, "lenpen": 0.4},
"pt": {"beam": 10, "lenpen": 0.9},
"ro": {"beam": 10, "lenpen": 1.0},
"ru": {"beam": 10, "lenpen": 0.3},
}
# A lookup table for TTS (edenai)
lang2voice = {
"Arabic" : ["ar-XA", "MALE"],
"English" : ["en-US", "FEMALE"],
"Chinese" : ["cmn-TW", "MALE"],
"Spanish" : ["es-ES","MALE"],
"Russian" : ["ru-RU,", "FEMALE"],
"French" : ["fr-FR", "FEMALE"],
"German" : ["de-DE", "MALE"],
"Italian" : ["it-IT", "FEMALE"],
"Netherlands": ["nl-NL", "MALE"],
"Portuguese": ["pt-BR", "FEMALE"],
"Romanian" : ["ro-RO", "MALE"],
}
# load whisper
os.system("pip install git+https://github.com/openai/whisper.git")
# load mRASP2
# load ConST
#os.system("git clone https://github.com/ReneeYe/ConST")
#os.system("mv ConST ConST_git")
#os.system('mv -n ConST_git/* ./')
#os.system("rm -rf ConST_git")
#os.system("pip3 install --editable ./")
#os.system("mkdir -p data checkpoint")
def restrict_src_options(model_type):
if model_type == 'Whisper+mRASP2':
return gr.Dropdown.update(visible= True), gr.Dropdown.update(visible= True), gr.Dropdown.update(visible= False), gr.Button.update(visible= True)
else:
return gr.Dropdown.update(visible= False), gr.Dropdown.update(visible= False), gr.Dropdown.update(visible= True), gr.Button.update(visible= False)
def switchLang(src_lang, tgt_lang):
return tgt_lang, src_lang
# The predict function. audio, language and mic_audio are all parameters directly passed by gradio
# which means they are user inputted. They are specified in gr.inputs[] block at the bottom. The
# gr.outputs[] block will specify the output type.
def predict(audio, src_language, tgt_language_mRASP, tgt_language_ConST, model_type, mic_audio=None):
# checks if mic_audio is used, otherwise feeds model uploaded audio
start_predict = time.time()
if mic_audio is not None:
input_audio = mic_audio
elif audio is not None:
input_audio = audio
else:
return "(please provide audio)"
transcript = "Undefined"
translation = "Undefined"
if model_type == 'Whisper+mRASP2':
transcript, translation = predictWithmRASP2(input_audio, src_language, tgt_language_mRASP)
language = tgt_language_mRASP
elif model_type == 'ConST':
predictWithConST(input_audio, tgt_language_ConST)
language = tgt_language_ConST
start_tts = time.time()
payload={
"providers": "google",
"language": lang2voice[language][0],
"option": lang2voice[language][1],
"text": translation,
}
response = requests.post(url, json=payload, headers=headers)
result = json.loads(response.text)
os.system('wget -O output.wav "{}"'.format(result['google']['audio_resource_url']))
tts_time = time.time() - start_tts
print(f"Took {tts_time} to do text to speech")
total_time = time.time() - start_predict
print(f"Took {total_time} to do entire prediction")
return transcript, translation, "output.wav"
def predictWithmRASP2(input_audio, src_language, tgt_language):
print("Called predictWithmRASP2")
# Uses the model's preprocessing methods to preprocess audio
asr_start = time.time()
audio = whisper.load_audio(input_audio)
audio = whisper.pad_or_trim(audio)
# Calculates the mel frequency spectogram
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# if model is supposed to detect language, set outLanguage to None
# otherwise set to specified language
if(src_language == "Detect Language"):
src_language = None
else:
src_language = language_id_lookup[src_language.split()[0]]
tgt_language = language_id_lookup[tgt_language.split()[0]]
# Runs the audio through the whisper model and gets the DecodingResult object, which has the features:
# audio_features (Tensor), language, language_probs, tokens, text, avg_logprob, no_speech_prob, temperature, compression_ratio
# asr
options = whisper.DecodingOptions(fp16 = False, language = src_language)
result = whisper.decode(model, mel, options)
if src_language is None:
src_language = result.language
transcript = result.text
asr_time = time.time() - asr_start
mt_start_time = time.time()
# mt
with open("input." + src_language, 'w') as w:
w.write(result.text)
with open("input." + tgt_language, 'w') as w:
w.write('LANG_TOK_' + src_language.upper())
#os.system("python3 fairseq/fairseq_cli/preprocess.py --dataset-impl raw \
# --srcdict bpe_vocab --tgtdict bpe_vocab --testpref input -s {} -t {}".format( \
# src_language, tgt_language))
#previous way of doing it
old_way = """os.system("python3 fairseq/fairseq_cli/interactive.py ./data-bin \
--user-dir mcolt \
-s zh \
-t en \
--skip-invalid-size-inputs-valid-test \
--path {} \
--max-tokens 1024 \
--task translation_w_langtok \
--lang-prefix-tok \"LANG_TOK_{}\" \
--max-source-positions 1024 \
--max-target-positions 1024 \
--nbest 1 \
--bpe subword_nmt \
--bpe-codes codes.bpe.32000 \
--post-process --tokenizer moses \
--input input.{} | grep -E '[D]-[0-9]+' > output".format(
model_name, tgt_language.upper(), src_language))"""
translation = mRASPloader.infer(cfg, models, task, max_positions, tokenizer, bpe, use_cuda, generator, src_dict, tgt_dict, align_dict, start_time, start_id, src_language, tgt_language)
translation = (' '.join(translation.split(' ')[1:])).strip()
mt_time = time.time() - mt_start_time
# Returns the text
return transcript, translation
title = "Demo for Speech Translation (Whisper+mRASP2 and ConST)"
description = """
<b>How to use:</b> Upload an audio file or record using the microphone. The audio is either processed by being inputted into the openai whisper model for transcription
and then mRASP2 for translation, or by ConST, which directly takes the audio input and produces text in the desired language. When using Whisper+mRASP2,
you can ask the model to detect a language, it will tell you what language it detected. ConST only supports translating from English to another language.
"""
# The gradio block
cfg = mRASPloader.createCFG()
print(cfg)
models, task, max_positions, tokenizer, bpe, use_cuda, generator, src_dict, tgt_dict, align_dict, start_time, start_id = mRASPloader.loadmRASP2(cfg)
demo = gr.Blocks()
with demo:
gr.Markdown("# " + title)
gr.Markdown("###" + description)
with gr.Row():
with gr.Column():
model_type = gr.Dropdown(['Whisper+mRASP2'], type = "value", value = 'Whisper+mRASP2', label = "Select the model you want to use.")
audio_file = gr.Audio(label="Upload Speech", source="upload", type="filepath")
src_language = gr.Dropdown(['Arabic',
'Chinese',
'English',
'Spanish',
'Russian',
'French',
'Detect Language'], value = 'English', label="Select the language of input")
tgt_language_mRASP = gr.Dropdown(['Arabic',
'Chinese',
'English',
'Spanish',
'Russian',
'French'], type="value", value='English', label="Select the language of output")
tgt_language_ConST = gr.Dropdown(['German',
'Spanish',
'French',
'Italian',
'Netherlands',
'Portugese',
'Romanian',
'Russian'], type = 'value', value='German', label="Select the language of output", visible= False)
switch_lang_button = gr.Button("Switch input and output languages")
mic_audio = gr.Audio(label="Record Speech", source="microphone", type="filepath")
model_type.change(fn = restrict_src_options, inputs=[model_type], outputs=[src_language, tgt_language_mRASP, tgt_language_ConST, switch_lang_button])
submit_button = gr.Button("Submit")
with gr.Column():
transcript = gr.Text(label= "Transcription")
translate = gr.Text(label= "Translation")
translated_speech = gr.Audio(label="Translation Speech")
submit_button.click(fn = predict, inputs=[audio_file, src_language, tgt_language_mRASP, tgt_language_ConST, model_type, mic_audio], outputs=[transcript, translate, translated_speech])
switch_lang_button.click(switchLang, [src_language, tgt_language_mRASP], [src_language, tgt_language_mRASP])
demo.launch() |