Spaces:
Runtime error
Runtime error
from fairseq.data import BaseWrapperDataset, LanguagePairDataset, plasma_utils | |
import numpy as np | |
import logging | |
logger = logging.getLogger(__name__) | |
class SubsampleLanguagePairDataset(BaseWrapperDataset): | |
"""Subsamples a given dataset by a specified ratio. Subsampling is done on the number of examples | |
Args: | |
dataset (~torch.utils.data.Dataset): dataset to subsample | |
size_ratio(float): the ratio to subsample to. must be between 0 and 1 (exclusive) | |
""" | |
def __init__(self, dataset, size_ratio, weights=None, replace=False, seed=0, epoch=1): | |
super().__init__(dataset) | |
assert size_ratio <= 1 | |
self.actual_size = np.ceil(len(dataset) * size_ratio).astype(int) | |
logger.info( | |
"subsampled dataset from {} to {} (ratio={})".format( | |
len(self.dataset), self.actual_size, size_ratio | |
) | |
) | |
self.src_dict = self.dataset.src_dict | |
self.tgt_dict = self.dataset.tgt_dict | |
self.left_pad_source = self.dataset.left_pad_source | |
self.left_pad_target = self.dataset.left_pad_target | |
self.seed = seed | |
self._cur_epoch = None | |
self._cur_indices = None | |
self.replace = replace | |
if weights is None: | |
self.weights = None | |
else: | |
assert len(weights) == len(dataset) | |
weights_arr = np.array(weights, dtype=np.float64) | |
weights_arr /= weights_arr.sum() | |
self.weights = plasma_utils.PlasmaArray(weights_arr) | |
self.set_epoch(epoch) | |
def __getitem__(self, index): | |
index = self._cur_indices.array[index] | |
return self.dataset.__getitem__(index) | |
def __len__(self): | |
return self.actual_size | |
def sizes(self): | |
return self.dataset.sizes[self._cur_indices.array] | |
def src_sizes(self): | |
return self.dataset.src_sizes[self._cur_indices.array] | |
def tgt_sizes(self): | |
return self.dataset.tgt_sizes[self._cur_indices.array] | |
def name(self): | |
return self.dataset.name | |
def num_tokens(self, index): | |
index = self._cur_indices.array[index] | |
return self.dataset.num_tokens(index) | |
def size(self, index): | |
index = self._cur_indices.array[index] | |
return self.dataset.size(index) | |
def ordered_indices(self): | |
if self.shuffle: | |
indices = np.random.permutation(len(self)).astype(np.int64) | |
else: | |
indices = np.arange(len(self), dtype=np.int64) | |
# sort by target length, then source length | |
if self.tgt_sizes is not None: | |
indices = indices[np.argsort(self.tgt_sizes[indices], kind="mergesort")] | |
return indices[np.argsort(self.src_sizes[indices], kind="mergesort")] | |
def prefetch(self, indices): | |
indices = self._cur_indices.array[indices] | |
self.dataset.prefetch(indices) | |
def can_reuse_epoch_itr_across_epochs(self): | |
return False | |
def set_epoch(self, epoch): | |
logger.info("SubsampleLanguagePairDataset.set_epoch: {}".format(epoch)) | |
super().set_epoch(epoch) | |
if epoch == self._cur_epoch: | |
return | |
self._cur_epoch = epoch | |
# Generate a weighted sample of indices as a function of the | |
# random seed and the current epoch. | |
rng = np.random.RandomState( | |
[ | |
42, # magic number | |
self.seed % (2 ** 32), # global seed | |
self._cur_epoch, # epoch index | |
] | |
) | |
self._cur_indices = plasma_utils.PlasmaArray( | |
rng.choice( | |
len(self.dataset), | |
self.actual_size, | |
replace=self.replace, | |
p=(None if self.weights is None else self.weights.array), | |
) | |
) | |
logger.info( | |
"Dataset is sub-sampled: {} -> {}, first 3 ids are: {}".format(len(self.dataset), self.actual_size, | |
",".join( | |
[str(_i) for _i in | |
self._cur_indices.array[:3]]))) | |