christopher's picture
Update app.py
5da936b
raw
history blame
1.3 kB
import streamlit as st
from tf_coder.value_search import colab_interface
from tf_coder.value_search import value_search_settings
def get_problem():
"""Specifies a problem to run TF-Coder on. Edit this function!"""
# A dict mapping input variable names to input tensors.
inputs = {
'rows': [10, 20, 30],
'cols': [1, 2, 3, 4],
}
# The single desired output tensor.
output = [[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34]]
# A list of relevant scalar constants (if any).
constants = []
# An English description of the tensor manipulation.
description = 'add two vectors with broadcasting to get a matrix'
return inputs, output, constants, description
settings = value_search_settings.from_dict({
'timeout': 300,
'only_minimal_solutions': False,
'max_solutions': 1,
'require_all_inputs_used': True,
'require_one_input_used': False,
})
i = st.text_area("input tensor","second test")
inputs, output, constants, description = get_problem()
t = colab_interface.run_value_search_from_colab(inputs, output, constants, description, settings)
for e in ["benchmark", "count", "index", "settings", "solutions", "statistics", "total_time", "value_set", "values_by_weight"]:
st.write(eval(f"t.{e}")