Spaces:
Running
Running
import streamlit as st | |
from tf_coder.value_search import colab_interface | |
from tf_coder.value_search import value_search_settings | |
def get_problem(): | |
"""Specifies a problem to run TF-Coder on. Edit this function!""" | |
# A dict mapping input variable names to input tensors. | |
inputs = { | |
'rows': [10, 20, 30], | |
'cols': [1, 2, 3, 4], | |
} | |
# The single desired output tensor. | |
output = [[11, 12, 13, 14], | |
[21, 22, 23, 24], | |
[31, 32, 33, 34]] | |
# A list of relevant scalar constants (if any). | |
constants = [] | |
# An English description of the tensor manipulation. | |
description = 'add two vectors with broadcasting to get a matrix' | |
return inputs, output, constants, description | |
settings = value_search_settings.from_dict({ | |
'timeout': 300, | |
'only_minimal_solutions': False, | |
'max_solutions': 1, | |
'require_all_inputs_used': True, | |
'require_one_input_used': False, | |
}) | |
i = st.text_area("input tensor","second test") | |
inputs, output, constants, description = get_problem() | |
t = colab_interface.run_value_search_from_colab(inputs, output, constants, description, settings) | |
for e in ["benchmark", "count", "index", "settings", "solutions", "statistics", "total_time", "value_set", "values_by_weight"]: | |
st.write(eval(f"t.{e}") |