SwinTExCo / app.py
duongttr's picture
Update app.py
efb56b8
raw
history blame
7.91 kB
import numpy as np
import shutil
import os
import argparse
import torch
import glob
from tqdm import tqdm
from PIL import Image
from collections import OrderedDict
from src.models.vit.config import load_config
import torchvision.transforms as transforms
import cv2
from skimage import io
from src.models.CNN.ColorVidNet import GeneralColorVidNet
from src.models.vit.embed import GeneralEmbedModel
from src.models.CNN.NonlocalNet import GeneralWarpNet
from src.models.CNN.FrameColor import frame_colorization
from src.utils import (
RGB2Lab,
ToTensor,
Normalize,
uncenter_l,
tensor_lab2rgb,
SquaredPadding,
UnpaddingSquare
)
import gradio as gr
def load_params(ckpt_file):
params = torch.load(ckpt_file, map_location=device)
new_params = []
for key, value in params.items():
new_params.append((key, value))
return OrderedDict(new_params)
def custom_transform(transforms, img):
for transform in transforms:
if isinstance(transform, SquaredPadding):
img,padding=transform(img, return_paddings=True)
else:
img = transform(img)
return img.to(device), padding
def save_frames(predicted_rgb, video_name, frame_name):
if predicted_rgb is not None:
predicted_rgb = np.clip(predicted_rgb, 0, 255).astype(np.uint8)
# frame_path_parts = frame_path.split(os.sep)
# if os.path.exists(os.path.join(OUTPUT_RESULT_PATH, frame_path_parts[-2])):
# shutil.rmtree(os.path.join(OUTPUT_RESULT_PATH, frame_path_parts[-2]))
# os.makedirs(os.path.join(OUTPUT_RESULT_PATH, frame_path_parts[-2]), exist_ok=True)
predicted_rgb = np.transpose(predicted_rgb, (1,2,0))
pil_img = Image.fromarray(predicted_rgb)
pil_img.save(os.path.join(OUTPUT_RESULT_PATH, video_name, frame_name))
def extract_frames_from_video(video_path):
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
# remove if exists folder
output_frames_path = os.path.join(INPUT_VIDEO_FRAMES_PATH, os.path.basename(video_path))
if os.path.exists(output_frames_path):
shutil.rmtree(output_frames_path)
# make new folder
os.makedirs(output_frames_path)
currentframe = 0
frame_path_list = []
while(True):
# reading from frame
ret,frame = cap.read()
if ret:
name = os.path.join(output_frames_path, f'{currentframe:09d}.jpg')
frame_path_list.append(name)
cv2.imwrite(name, frame)
currentframe += 1
else:
break
cap.release()
cv2.destroyAllWindows()
return frame_path_list, fps
def combine_frames_from_folder(frames_list_path, fps = 30):
frames_list = glob.glob(f'{frames_list_path}/*.jpg')
frames_list.sort()
sample_shape = cv2.imread(frames_list[0]).shape
output_video_path = os.path.join(frames_list_path, 'output_video.mp4')
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (sample_shape[1], sample_shape[0]))
for filename in frames_list:
img = cv2.imread(filename)
out.write(img)
out.release()
return output_video_path
def upscale_image(I_current_rgb, I_current_ab_predict):
H, W = I_current_rgb.size
high_lab_transforms = [
SquaredPadding(target_size=max(H,W)),
RGB2Lab(),
ToTensor(),
Normalize()
]
# current_frame_pil_rgb = Image.fromarray(np.clip(I_current_rgb.squeeze(0).permute(1,2,0).cpu().numpy() * 255, 0, 255).astype('uint8'))
high_lab_current, paddings = custom_transform(high_lab_transforms, I_current_rgb)
high_lab_current = torch.unsqueeze(high_lab_current,dim=0).to(device)
high_l_current = high_lab_current[:, 0:1, :, :]
high_ab_current = high_lab_current[:, 1:3, :, :]
upsampler = torch.nn.Upsample(scale_factor=max(H,W)/224,mode="bilinear")
high_ab_predict = upsampler(I_current_ab_predict)
I_predict_rgb = tensor_lab2rgb(torch.cat((uncenter_l(high_l_current), high_ab_predict), dim=1))
upadded = UnpaddingSquare()
I_predict_rgb = upadded(I_predict_rgb, paddings)
return I_predict_rgb
def colorize_video(video_path, ref_np):
frames_list, fps = extract_frames_from_video(video_path)
frame_ref = Image.fromarray(ref_np).convert("RGB")
I_last_lab_predict = None
IB_lab, IB_paddings = custom_transform(transforms, frame_ref)
IB_lab = IB_lab.unsqueeze(0).to(device)
IB_l = IB_lab[:, 0:1, :, :]
IB_ab = IB_lab[:, 1:3, :, :]
with torch.no_grad():
I_reference_lab = IB_lab
I_reference_l = I_reference_lab[:, 0:1, :, :]
I_reference_ab = I_reference_lab[:, 1:3, :, :]
I_reference_rgb = tensor_lab2rgb(torch.cat((uncenter_l(I_reference_l), I_reference_ab), dim=1)).to(device)
features_B = embed_net(I_reference_rgb)
video_path_parts = frames_list[0].split(os.sep)
if os.path.exists(os.path.join(OUTPUT_RESULT_PATH, video_path_parts[-2])):
shutil.rmtree(os.path.join(OUTPUT_RESULT_PATH, video_path_parts[-2]))
os.makedirs(os.path.join(OUTPUT_RESULT_PATH, video_path_parts[-2]), exist_ok=True)
for frame_path in tqdm(frames_list):
curr_frame = Image.open(frame_path).convert("RGB")
IA_lab, IA_paddings = custom_transform(transforms, curr_frame)
IA_lab = IA_lab.unsqueeze(0).to(device)
IA_l = IA_lab[:, 0:1, :, :]
IA_ab = IA_lab[:, 1:3, :, :]
if I_last_lab_predict is None:
I_last_lab_predict = torch.zeros_like(IA_lab).to(device)
with torch.no_grad():
I_current_lab = IA_lab
I_current_ab_predict, _ = frame_colorization(
IA_l,
I_reference_lab,
I_last_lab_predict,
features_B,
embed_net,
nonlocal_net,
colornet,
luminance_noise=0,
temperature=1e-10,
joint_training=False
)
I_last_lab_predict = torch.cat((IA_l, I_current_ab_predict), dim=1)
# IA_predict_rgb = tensor_lab2rgb(torch.cat((uncenter_l(IA_l), I_current_ab_predict), dim=1))
IA_predict_rgb = upscale_image(curr_frame, I_current_ab_predict)
#IA_predict_rgb = torch.nn.functional.upsample_bilinear(IA_predict_rgb, scale_factor=2)
save_frames(IA_predict_rgb.squeeze(0).cpu().numpy() * 255, video_path_parts[-2], os.path.basename(frame_path))
return combine_frames_from_folder(os.path.join(OUTPUT_RESULT_PATH, video_path_parts[-2]), fps)
if __name__ == '__main__':
# Init global variables
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
INPUT_VIDEO_FRAMES_PATH = 'inputs'
OUTPUT_RESULT_PATH = 'outputs'
weight_path = 'checkpoints'
embed_net=GeneralEmbedModel(pretrained_model="swin-tiny", device=device).to(device)
nonlocal_net = GeneralWarpNet(feature_channel=128).to(device)
colornet=GeneralColorVidNet(7).to(device)
embed_net.eval()
nonlocal_net.eval()
colornet.eval()
# Load weights
# embed_net_params = load_params(os.path.join(weight_path, "embed_net.pth"))
nonlocal_net_params = load_params(os.path.join(weight_path, "nonlocal_net.pth"))
colornet_params = load_params(os.path.join(weight_path, "colornet.pth"))
# embed_net.load_state_dict(embed_net_params, strict=True)
nonlocal_net.load_state_dict(nonlocal_net_params, strict=True)
colornet.load_state_dict(colornet_params, strict=True)
transforms = [SquaredPadding(target_size=224),
RGB2Lab(),
ToTensor(),
Normalize()]
#examples = [[vid, ref] for vid, ref in zip(sorted(glob.glob('examples/*/*.mp4')), sorted(glob.glob('examples/*/*.jpg')))]
demo = gr.Interface(colorize_video,
inputs=[gr.Video(), gr.Image()],
outputs="playable_video")#,
#examples=examples,
#cache_examples=True)
demo.launch()