Spaces:
Running
Running
File size: 6,873 Bytes
60d44e9 6fa7314 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 6fa7314 60d44e9 a85c16a 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 d89ff19 60d44e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from pathlib import Path
import re
from datasets import load_dataset
import json
import gradio as gr
from matplotlib import pyplot as plt
import pandas as pd
HEAD_HTML = """
<link href='https://fonts.googleapis.com/css?family=PT Mono' rel='stylesheet'>
"""
def normalize_spaces(text):
return '\n'.join(re.sub(r" {2,}", " ", line) for line in text.split('\n'))
def load_json(file_path):
with open(file_path, "r") as file:
return json.load(file)
def on_select(evt: gr.SelectData, current_split):
item_id = evt.row_value[0]
filename = evt.row_value[1]
output_methods = []
for method in METHOD_LIST:
output_methods.extend(
[
item_by_id_dict[current_split][filename][method],
evaluation_dict[current_split][method][filename]["pred"],
evaluation_dict[current_split][method][filename]["score"] == 1,
]
)
return output_methods + [
item_by_id_dict[current_split][filename]["image"],
input_dataframe[current_split]["questions"][item_id],
input_dataframe[current_split]["answers"][item_id],
]
def on_dataset_change(current_split):
# update dataframe, plot based on the selected dataset
plot = generate_plot(
providers=METHOD_LIST,
scores=[
method_scores[current_split][method]
for method in METHOD_LIST
],
)
dataframe = pd.DataFrame(input_dataframe[current_split])
return plot, dataframe
def generate_plot(providers, scores):
fig, ax = plt.subplots(figsize=(4, 3))
bars = ax.barh(providers[::-1], scores[::-1])
min_score = min(scores)
max_score = max(scores)
# Customize plot
ax.set_title("Methods Average Scores")
ax.set_ylabel("Methods")
ax.set_xlabel("Scores")
ax.set_xlim(min_score - 0.1, min(max_score + 0.1, 1.0))
for bar in bars:
width = bar.get_width()
ax.text(
width,
bar.get_y() + bar.get_height() / 2.0,
f"{width:.3f}",
ha="left",
va="center",
)
plt.tight_layout()
return fig
evaluation_json_dir = Path("eval_output")
dataset = load_dataset(path="terryoo/TableVQA-Bench")
SPLIT_NAMES = ["fintabnetqa", "vwtq_syn"]
DEFAULT_SPLIT_NAME = "fintabnetqa"
METHOD_LIST = ["text_2d", "text_1d", "html"]
item_by_id_dict = {}
input_dataframe = {}
evaluation_dict = {}
method_scores = {}
for split_name in SPLIT_NAMES:
input_text_path = Path(
f"dataset_tablevqa_{split_name}_2d_text"
)
item_by_id_dict[split_name] = {}
input_dataframe[split_name] = {
"ids": [],
"filenames": [],
"questions": [],
"answers": [],
}
evaluation_dict[split_name] = {}
method_scores[split_name] = {}
for idx, sample in enumerate(dataset[split_name]):
sample_id = sample["qa_id"]
text_path = input_text_path / f"{sample_id}.txt"
with open(text_path, "r") as f:
text_2d = f.read()
item_by_id_dict[split_name][sample_id] = {
"text_2d": text_2d,
"text_1d": normalize_spaces(text_2d),
"image": sample["image"],
"html": sample["text_html_table"],
}
input_dataframe[split_name]["ids"].append(idx)
input_dataframe[split_name]["filenames"].append(sample_id)
input_dataframe[split_name]["questions"].append(sample["question"])
input_dataframe[split_name]["answers"].append(sample["gt"])
for method in METHOD_LIST:
evaluation_json_path = evaluation_json_dir / f"{split_name}_{method}.json"
evaluation_data = load_json(evaluation_json_path)
evaluation_dict[split_name][method] = {
item["qa_id"]: {
"pred": item["pred"],
"score": item["scores"]["a"],
}
for item in evaluation_data["instances"]
}
method_scores[split_name][method] = round(
evaluation_data["evaluation_meta"]["average_scores"][0] / 100,
2,
)
with gr.Blocks(
theme=gr.themes.Ocean(
font_mono="PT Mono",
),
head=HEAD_HTML,
) as demo:
gr.Markdown(
"# 2D Layout-Preserving Text Benchmark\n"
"Dataset: [TableVQA-Bench](https://huggingface.co/datasets/terryoo/TableVQA-Bench)\n"
)
dataset_name = gr.Dropdown(
label="Dataset split",
value=DEFAULT_SPLIT_NAME,
choices=["fintabnetqa", "vwtq_syn"],
)
gr.Markdown("### File List")
plot_avg = gr.Plot(
label="Average scores",
value=generate_plot(
providers=METHOD_LIST,
scores=[
method_scores[DEFAULT_SPLIT_NAME][method]
for method in METHOD_LIST
],
),
container=False,
)
file_list = gr.Dataframe(
value=pd.DataFrame(input_dataframe[DEFAULT_SPLIT_NAME]),
max_height=300,
show_row_numbers=False,
show_search=True,
column_widths=["10%", "30%", "30%", "30%"],
)
with gr.Row():
with gr.Column():
demo_image = gr.Image(
label="Input Image",
interactive=False,
height=400,
width=600,
)
with gr.Column():
question = gr.Textbox(
label="Question",
interactive=False,
)
answer_gt = gr.Textbox(
label="GT Answer",
interactive=False,
)
output_elements = []
with gr.Tabs():
for method in METHOD_LIST:
with gr.Tab(method):
if "html" in method:
output = gr.HTML(
container=False,
show_label=False,
)
else:
output = gr.Code(
container=False,
language="markdown",
show_line_numbers=False,
)
pred = gr.Textbox(
label="Predicted Answer",
interactive=False,
)
score = gr.Textbox(
label="Score",
interactive=False,
)
output_elements.extend([output, pred, score])
file_list.select(
fn=on_select,
inputs=[dataset_name],
outputs=output_elements +
[
demo_image,
question,
answer_gt
],
)
dataset_name.change(
fn=on_dataset_change,
inputs=dataset_name,
outputs=[plot_avg, file_list],
)
demo.launch()
|