File size: 7,958 Bytes
1cc6224 49f8dca 1cc6224 9f5095c 1cc6224 9f5095c ff9d83f 2533f60 bb20f00 8b6e76a bb20f00 ff9d83f 1cc6224 9f5095c 1cc6224 1f026bc ff9d83f aa226e5 ff9d83f 1cc6224 aa0ba9a 1cc6224 224f843 aa0ba9a 1cc6224 aa0ba9a 1cc6224 ff9d83f 4ac5a75 ff9d83f 1cc6224 1f026bc 1cc6224 1f026bc 1cc6224 855a1c9 b21e31a 8993926 fb08817 855a1c9 a20abf1 7958323 1cc6224 aa0ba9a 1cc6224 c2f1044 1cc6224 fc29e4b 2ed95ec fc29e4b 0a054c2 1f026bc 0a054c2 1f026bc aa0ba9a 1f026bc aa0ba9a 1f026bc 1cc6224 b21e31a c6f3aad a20abf1 c6f3aad 3f18b53 a9e7f16 c6f3aad 49f8dca b21e31a 1cc6224 c6f3aad 1cc6224 12ee1bd 43c999a 1cc6224 600e2c6 8e1c86d 600e2c6 43c999a 600e2c6 a83c8b7 600e2c6 12ee1bd 1cc6224 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing destress-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a comfort chatbot specialized in providing information on therapy, destressing activites, and student opportunities."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
messages.append({
"role": "system",
"content": "Do not use Markdown Format. Do not include hashtags or asterisks"
})
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing therapy, destressing activites, and student opportunities information.
"""
try:
user_message = f"Here's the information on your request: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=messages,
max_tokens=4000,
temperature=0.5,
top_p=1,
frequency_penalty=0.5,
presence_penalty=0.5,
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": user_message})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to CalmConnect! Ask me anything about destressing strategies or student opportunities. Feel free to talk to our online therapist!"
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question or head to our resources page."
response = generate_response(question, relevant_segment)
return response
# Define the HTML iframe content
iframe = '''
<iframe style="border-radius:12px" src="https://docs.google.com/spreadsheets/d/e/2PACX-1vRroWVBXq1Fa0x7SvRTzSBMHFIp59VtVEWCxeg8kWJU4ll1_o4yzBnt4ArT88s7g4TQrMKEXZUQAeHF/pubhtml?widget=true&headers=false" width="100%" height="352" frameBorder="0" allowfullscreen="true" allow="autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture" loading="lazy"></iframe>
'''
iframe2 = '''
<iframe style="border-radius:12px" src="https://open.spotify.com/embed/playlist/6wwxTePuIKYMqt6RCytB7X?utm_source=generator" width="100%" height="352" frameBorder="0" allowfullscreen="" allow="autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture" loading="lazy"></iframe>
'''
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 🪷 Welcome to CalmConnect! 🪷
## Your AI-driven assistant for destressing and extracurricular opportunity queries. Created by Olivia W, Alice T, and Cindy W of the 2024 Kode With Klossy CITY Camp.
"""
topics = """
### Feel Free to ask CalmBot (Our Therapist Bot) anything from the topics below!
- Arts and Crafts (When asking for arts and crafts ideas, state whether you have 15 min, 30 min, 45 min, 1 hour, 1 hour and a half, 2 hours, 2 hours and a half, 3 hours or greater)
- Destressing strategies (Breathing Exercises, stretches, etc.)
- Mental Health
- Identity (Sexual, Gender, etc.)
- Bullying
- Racism
- Relationships (Family, Friends, etc.)
- Abuse (Emotional, Physical, Sexual, Mental, etc.)
- Support Resources
### If you are interested in the following below, click on our Student Opportunities Database!
- Engineering
- Technology / Computer Science
- Research : STEM
- Finance
- Law / Political Science / Debate
- The Arts
- Business / Leadership
- Pyschology
- Medicine / Biology
- Literature / Writing
- College Prep
- Advocacy: Non-Profit, Environment or Identity
- Volunteering
- Study Abroad
"""
# Create a Gradio HTML component
def display_iframe():
return iframe
def display_iframe2():
return iframe2
theme = gr.themes.Monochrome(
primary_hue="pink",
secondary_hue="green",
).set(
background_fill_primary='*primary_200',
background_fill_primary_dark='*primary_200',
background_fill_secondary='*secondary_300',
background_fill_secondary_dark='*secondary_300',
border_color_accent='*secondary_200',
border_color_accent_dark='*secondary_600',
border_color_accent_subdued='*secondary_200',
border_color_primary='*secondary_300',
block_border_color='*secondary_200',
button_primary_background_fill='*secondary_300',
button_primary_background_fill_dark='*secondary_300')
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Row():
gr.Markdown(topics) # Show the topics on the left side
gr.HTML(display_iframe()) # Embed the iframe on the left side
gr.HTML(display_iframe2())
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your Request", placeholder="What would you like to talk about?")
answer = gr.Textbox(label="CalmBot's Response", placeholder="CalmBot will respond here...", interactive=False, lines=17)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
demo.launch()
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|