Spaces:
Running
Running
import gradio as gr | |
from PIL import Image | |
import torch | |
#from diffusers import FluxControlNetModel | |
#from diffusers.pipelines import FluxControlNetPipeline | |
from diffusers import FluxControlNetPipeline | |
from diffusers.models import FluxControlNetModel, FluxMultiControlNetModel | |
#import torch.nn.functional as F | |
#import torchvision | |
#import torchvision.transforms as T | |
#import cv2 | |
from diffusers import StableDiffusionInpaintPipeline | |
import numpy as np | |
import os | |
import shutil | |
from gradio_client import Client, handle_file | |
# Load the model once globally to avoid repeated loading | |
def load_inpainting_model(): | |
# Load pipeline | |
model_path = "uberRealisticPornMerge_urpmv13Inpainting.safetensors" | |
#model_path = "uberRealisticPornMerge_v23Inpainting.safetensors" | |
#model_path = "pornmasterFantasy_v4-inpainting.safetensors" | |
#model_path = "pornmasterAmateur_v6Vae-inpainting.safetensors" | |
device = "cpu" # Explicitly use CPU | |
pipe = StableDiffusionInpaintPipeline.from_single_file( | |
model_path, | |
torch_dtype=torch.float32, # Use float32 for CPU | |
safety_checker=None | |
).to(device) | |
return pipe | |
# Load the model once globally to avoid repeated loading | |
def load_upscaling_model(): | |
# Load pipeline | |
device = "cpu" # Explicitly use CPU | |
controlnet = FluxControlNetModel.from_pretrained( | |
"jasperai/Flux.1-dev-Controlnet-Upscaler", | |
torch_dtype=torch.float32 | |
) | |
pipe = FluxControlNetPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
controlnet=controlnet, | |
torch_dtype=torch.float32 | |
).to(device) | |
return pipe | |
# Preload the model once | |
inpaint_pipeline = load_inpainting_model() | |
# Preload the model once | |
upscale_pipeline = load_upscaling_model() | |
# Function to resize image (simpler interpolation method for speed) | |
def resize_to_match(input_image, output_image): | |
w, h = output_image.size | |
control_image = output_image.resize((w * 4, h * 4)) | |
scaled_image = pipe( | |
prompt="", | |
control_image=control_image, | |
controlnet_conditioning_scale=0.6, | |
num_inference_steps=28, | |
guidance_scale=3.5, | |
height=control_image.size[1], | |
width=control_image.size[0] | |
).images[0] | |
return scaled_image | |
#torch_img = pil_to_torch(input_image) | |
#torch_img_scaled = F.interpolate(torch_img.unsqueeze(0),mode='trilinear').squeeze(0) | |
#output_image = torchvision.transforms.functional.to_pil_image(torch_img_scaled, mode=None) | |
#return output_image.resize(input_image.size, Image.BICUBIC) # Use BILINEAR for faster resizing | |
# Function to generate the mask using Florence SAM Masking API (Replicate) | |
def generate_mask(image_path, text_prompt="clothing"): | |
client_sam = Client("SkalskiP/florence-sam-masking") | |
mask_result = client_sam.predict( | |
image_input=handle_file(image_path), # Provide your image path here | |
text_input=text_prompt, # Use "clothing" as the prompt | |
api_name="/process_image" | |
) | |
return mask_result # This is the local path to the generated mask | |
# Save the generated mask | |
def save_mask(mask_local_path, save_path="generated_mask.png"): | |
try: | |
shutil.copy(mask_local_path, save_path) | |
except Exception as e: | |
print(f"Failed to save the mask: {e}") | |
# Function to perform inpainting | |
def inpaint_image(input_image, mask_image): | |
prompt = "undress, naked" | |
result = inpaint_pipeline(prompt=prompt, image=input_image, mask_image=mask_image) | |
inpainted_image = result.images[0] | |
inpainted_image = resize_to_match(input_image, inpainted_image) | |
return inpainted_image | |
# Function to process input image and mask | |
def process_image(input_image): | |
# Save the input image temporarily to process with Replicate | |
input_image_path = "temp_input_image.png" | |
input_image.save(input_image_path) | |
# Generate the mask using Florence SAM API | |
mask_local_path = generate_mask(image_path=input_image_path) | |
# Save the generated mask | |
mask_image_path = "generated_mask.png" | |
save_mask(mask_local_path, save_path=mask_image_path) | |
# Open the mask image and perform inpainting | |
mask_image = Image.open(mask_image_path) | |
result_image = inpaint_image(input_image, mask_image) | |
# Clean up temporary files | |
os.remove(input_image_path) | |
os.remove(mask_image_path) | |
return result_image | |
# Define Gradio interface using Blocks API | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
input_image = gr.Image(label="Upload Input Image", type="pil") | |
output_image = gr.Image(type="pil", label="Output Image") | |
# Button to trigger the process | |
with gr.Row(): | |
btn = gr.Button("Run Inpainting") | |
# Function to run when button is clicked | |
btn.click(fn=process_image, inputs=[input_image], outputs=output_image) | |
# Launch the Gradio app | |
demo.launch(share=True) | |