File size: 4,870 Bytes
9244e51
 
 
003a57c
 
 
 
dcb1138
8fa0841
 
 
dcb1138
 
9244e51
 
 
 
 
 
 
 
dcb1138
aaadd05
 
db01d0c
e7d1e40
9244e51
 
 
 
 
 
 
 
dcb1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9244e51
 
dcb1138
 
9244e51
 
 
dcb1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fa0841
 
 
dcb1138
9244e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb1138
9244e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
from PIL import Image
import torch
#from diffusers import FluxControlNetModel
#from diffusers.pipelines import FluxControlNetPipeline
from diffusers import FluxControlNetPipeline
from diffusers.models import FluxControlNetModel, FluxMultiControlNetModel

#import torch.nn.functional as F
#import torchvision
#import torchvision.transforms as T
#import cv2

from diffusers import StableDiffusionInpaintPipeline
import numpy as np
import os
import shutil
from gradio_client import Client, handle_file

# Load the model once globally to avoid repeated loading
def load_inpainting_model():
    # Load pipeline
    model_path = "uberRealisticPornMerge_urpmv13Inpainting.safetensors"
    #model_path = "uberRealisticPornMerge_v23Inpainting.safetensors"
    #model_path = "pornmasterFantasy_v4-inpainting.safetensors"
    #model_path = "pornmasterAmateur_v6Vae-inpainting.safetensors"
    device = "cpu"  # Explicitly use CPU
    pipe = StableDiffusionInpaintPipeline.from_single_file(
        model_path,
        torch_dtype=torch.float32,  # Use float32 for CPU
        safety_checker=None
    ).to(device)
    return pipe

# Load the model once globally to avoid repeated loading
def load_upscaling_model():
# Load pipeline
    device = "cpu"  # Explicitly use CPU
    controlnet = FluxControlNetModel.from_pretrained(
        "jasperai/Flux.1-dev-Controlnet-Upscaler",
        torch_dtype=torch.float32
    )
    pipe = FluxControlNetPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-dev",
        controlnet=controlnet,
        torch_dtype=torch.float32
    ).to(device)
    return pipe

# Preload the model once
inpaint_pipeline = load_inpainting_model()
# Preload the model once
upscale_pipeline = load_upscaling_model()

# Function to resize image (simpler interpolation method for speed)
def resize_to_match(input_image, output_image):

    w, h = output_image.size
    control_image = output_image.resize((w * 4, h * 4))
   
    scaled_image = pipe(
        prompt="", 
        control_image=control_image,
        controlnet_conditioning_scale=0.6,
        num_inference_steps=28, 
        guidance_scale=3.5,
        height=control_image.size[1],
        width=control_image.size[0]
    ).images[0]    
    
    return scaled_image
    
    #torch_img = pil_to_torch(input_image)
    #torch_img_scaled = F.interpolate(torch_img.unsqueeze(0),mode='trilinear').squeeze(0)
    #output_image = torchvision.transforms.functional.to_pil_image(torch_img_scaled, mode=None)
    #return output_image.resize(input_image.size, Image.BICUBIC)  # Use BILINEAR for faster resizing

# Function to generate the mask using Florence SAM Masking API (Replicate)
def generate_mask(image_path, text_prompt="clothing"):
    client_sam = Client("SkalskiP/florence-sam-masking")
    mask_result = client_sam.predict(
        image_input=handle_file(image_path),  # Provide your image path here
        text_input=text_prompt,  # Use "clothing" as the prompt
        api_name="/process_image"
    )
    return mask_result  # This is the local path to the generated mask

# Save the generated mask
def save_mask(mask_local_path, save_path="generated_mask.png"):
    try:
        shutil.copy(mask_local_path, save_path)
    except Exception as e:
        print(f"Failed to save the mask: {e}")

# Function to perform inpainting
def inpaint_image(input_image, mask_image):
    prompt = "undress, naked"
    result = inpaint_pipeline(prompt=prompt, image=input_image, mask_image=mask_image)
    inpainted_image = result.images[0]
    inpainted_image = resize_to_match(input_image, inpainted_image)
    return inpainted_image

# Function to process input image and mask
def process_image(input_image):
    # Save the input image temporarily to process with Replicate
    input_image_path = "temp_input_image.png"
    input_image.save(input_image_path)

    # Generate the mask using Florence SAM API
    mask_local_path = generate_mask(image_path=input_image_path)

    # Save the generated mask
    mask_image_path = "generated_mask.png"
    save_mask(mask_local_path, save_path=mask_image_path)

    # Open the mask image and perform inpainting
    mask_image = Image.open(mask_image_path)
    result_image = inpaint_image(input_image, mask_image)

    # Clean up temporary files
    os.remove(input_image_path)
    os.remove(mask_image_path)

    return result_image

# Define Gradio interface using Blocks API
with gr.Blocks() as demo:
    with gr.Row():
        input_image = gr.Image(label="Upload Input Image", type="pil")
        output_image = gr.Image(type="pil", label="Output Image")

    # Button to trigger the process
    with gr.Row():
        btn = gr.Button("Run Inpainting")

    # Function to run when button is clicked
    btn.click(fn=process_image, inputs=[input_image], outputs=output_image)

# Launch the Gradio app
demo.launch(share=True)