Update app.py
Browse files
app.py
CHANGED
@@ -54,7 +54,6 @@ class EnhancedAIvsRealGazeAnalyzer:
|
|
54 |
self.combined_data = pd.concat(all_dfs, ignore_index=True)
|
55 |
self.combined_data.columns = self.combined_data.columns.str.strip()
|
56 |
|
57 |
-
# Dynamically find participant ID columns
|
58 |
self.et_id_col = next((c for c in self.combined_data.columns if 'participant' in c.lower()), 'Participant name')
|
59 |
resp_id_col = next((c for c in self.response_data.columns if 'participant' in c.lower()), 'Participant name')
|
60 |
|
@@ -74,15 +73,17 @@ class EnhancedAIvsRealGazeAnalyzer:
|
|
74 |
|
75 |
self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
|
76 |
self.time_metrics = [c for c in self.numeric_cols if any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
|
77 |
-
self.participant_list = sorted(self.combined_data[self.et_id_col].unique().tolist())
|
78 |
|
79 |
-
#
|
|
|
|
|
|
|
|
|
80 |
self.group_means = self.combined_data.groupby('Answer_Correctness')[self.numeric_cols].mean()
|
81 |
print("Data loading complete.")
|
82 |
return self
|
83 |
|
84 |
def analyze_rq1_metric(self, metric):
|
85 |
-
"""Analyzes a single metric for RQ1."""
|
86 |
if not metric: return None, "Metric not found."
|
87 |
correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
|
88 |
incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
|
@@ -92,7 +93,6 @@ class EnhancedAIvsRealGazeAnalyzer:
|
|
92 |
return fig, summary
|
93 |
|
94 |
def run_prediction_model(self, test_size, n_estimators):
|
95 |
-
"""Trains and evaluates the RandomForest model for RQ2."""
|
96 |
leaky_features = ['Total_Correct', 'Overall_Accuracy', 'Correct', self.et_id_col]
|
97 |
self.feature_names = [col for col in self.numeric_cols if col not in leaky_features and col in self.combined_data.columns]
|
98 |
features = self.combined_data[self.feature_names].copy()
|
@@ -113,41 +113,29 @@ class EnhancedAIvsRealGazeAnalyzer:
|
|
113 |
return summary_md, report_df, fig
|
114 |
|
115 |
def analyze_individual_trial(self, participant, question):
|
116 |
-
"""Generates a detailed report for a single participant-question trial."""
|
117 |
if not participant or not question:
|
118 |
return "Please select a participant and a question.", None, None
|
119 |
|
120 |
-
|
|
|
121 |
if trial_data.empty:
|
122 |
return f"No data found for {participant} on {question}.", None, None
|
123 |
|
124 |
trial_data = trial_data.iloc[0]
|
125 |
actual_answer = trial_data['Answer_Correctness']
|
126 |
-
|
127 |
-
# Model Prediction for this specific trial
|
128 |
trial_features = trial_data[self.feature_names].values.reshape(1, -1)
|
129 |
trial_features_scaled = self.scaler.transform(trial_features)
|
130 |
prediction_prob = self.model.predict_proba(trial_features_scaled)[0]
|
131 |
predicted_answer = "Correct" if prediction_prob[1] > 0.5 else "Incorrect"
|
132 |
-
|
133 |
-
# Summary Text
|
134 |
-
summary_md = f"""
|
135 |
-
### Trial Breakdown: **{participant}** on **{question}**
|
136 |
-
- **Actual Answer:** `{actual_answer}`
|
137 |
-
- **Model Prediction:** `{predicted_answer}` (Confidence: {max(prediction_prob)*100:.1f}%)
|
138 |
-
"""
|
139 |
-
|
140 |
-
# A vs B Gaze Bias Plot
|
141 |
aoi_cols = [c for c in self.feature_names if ' A' in c or ' B' in c]
|
142 |
a_cols = sorted([c for c in aoi_cols if ' A' in c])
|
143 |
b_cols = sorted([c for c in aoi_cols if ' B' in c])
|
144 |
-
|
145 |
plot_data = []
|
146 |
for a_col, b_col in zip(a_cols, b_cols):
|
147 |
base_name = a_col.replace(' A', '')
|
148 |
plot_data.append({'AOI': base_name, 'Image': 'A', 'Value': trial_data[a_col]})
|
149 |
plot_data.append({'AOI': base_name, 'Image': 'B', 'Value': trial_data[b_col]})
|
150 |
-
|
151 |
fig, ax = plt.subplots(figsize=(10, 6))
|
152 |
if plot_data:
|
153 |
sns.barplot(data=pd.DataFrame(plot_data), x='Value', y='AOI', hue='Image', ax=ax, palette={'A': '#66b3ff', 'B': '#ff9999'})
|
@@ -155,26 +143,16 @@ class EnhancedAIvsRealGazeAnalyzer:
|
|
155 |
else:
|
156 |
ax.text(0.5, 0.5, 'No A/B Area of Interest data for this question.', ha='center')
|
157 |
plt.tight_layout()
|
158 |
-
|
159 |
-
# Feature Report Card
|
160 |
top_features = self.model.feature_importances_.argsort()[-5:][::-1]
|
161 |
top_feature_names = [self.feature_names[i] for i in top_features]
|
162 |
-
|
163 |
report_card_data = []
|
164 |
for feature in top_feature_names:
|
165 |
-
report_card_data.append({
|
166 |
-
'Top Feature': feature,
|
167 |
-
'This Trial Value': f"{trial_data[feature]:.2f}",
|
168 |
-
'Avg (Correct)': f"{self.group_means.loc['Correct', feature]:.2f}",
|
169 |
-
'Avg (Incorrect)': f"{self.group_means.loc['Incorrect', feature]:.2f}"
|
170 |
-
})
|
171 |
report_card_df = pd.DataFrame(report_card_data)
|
172 |
-
|
173 |
return summary_md, fig, report_card_df
|
174 |
|
175 |
-
# --- DATA SETUP
|
176 |
def setup_and_load_data():
|
177 |
-
"""Clones the repo if not present and loads data."""
|
178 |
repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
|
179 |
repo_dir = "GenAIEyeTrackingCleanedDataset"
|
180 |
if not os.path.exists(repo_dir):
|
@@ -209,9 +187,7 @@ def update_explorer_view(participant, question):
|
|
209 |
# --- GRADIO INTERFACE DEFINITION ---
|
210 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
211 |
gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis\nExplore the eye-tracking dataset by interacting with the controls below. The data is automatically loaded from the public GitHub repository.")
|
212 |
-
|
213 |
with gr.Tabs():
|
214 |
-
# --- TAB 1: RQ1 ---
|
215 |
with gr.TabItem("π RQ1: Viewing Time vs. Correctness"):
|
216 |
with gr.Row():
|
217 |
with gr.Column(scale=1):
|
@@ -219,8 +195,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
219 |
rq1_summary_output = gr.Markdown(label="Statistical Summary")
|
220 |
with gr.Column(scale=2):
|
221 |
rq1_plot_output = gr.Plot(label="Metric Comparison")
|
222 |
-
|
223 |
-
# --- TAB 2: RQ2 ---
|
224 |
with gr.TabItem("π€ RQ2: Predicting Correctness from Gaze"):
|
225 |
with gr.Row():
|
226 |
with gr.Column(scale=1):
|
@@ -231,8 +205,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
231 |
rq2_summary_output = gr.Markdown(label="Model Performance Summary")
|
232 |
rq2_table_output = gr.Dataframe(label="Classification Report", interactive=False)
|
233 |
rq2_plot_output = gr.Plot(label="Feature Importance")
|
234 |
-
|
235 |
-
# --- TAB 3: INNOVATIVE EXPLORER ---
|
236 |
with gr.TabItem("π¬ Individual Trial Explorer"):
|
237 |
gr.Markdown("### Deep Dive into a Single Trial\nSelect a participant and a question to see a detailed breakdown of their gaze behavior.")
|
238 |
with gr.Row():
|
@@ -244,22 +216,13 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
244 |
with gr.Column(scale=2):
|
245 |
explorer_plot = gr.Plot(label="Gaze Bias (Image A vs. B)")
|
246 |
|
247 |
-
# --- WIRING FOR ALL TABS ---
|
248 |
outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output]
|
249 |
outputs_explorer = [explorer_summary, explorer_plot, explorer_report_card]
|
250 |
-
|
251 |
-
# Wiring for Tab 1
|
252 |
rq1_metric_dropdown.change(fn=update_rq1_visuals, inputs=[rq1_metric_dropdown], outputs=[rq1_plot_output, rq1_summary_output])
|
253 |
-
|
254 |
-
# Wiring for Tab 2
|
255 |
rq2_test_size_slider.release(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
|
256 |
rq2_estimators_slider.release(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
|
257 |
-
|
258 |
-
# Wiring for Tab 3
|
259 |
explorer_participant.change(fn=update_explorer_view, inputs=[explorer_participant, explorer_question], outputs=outputs_explorer)
|
260 |
explorer_question.change(fn=update_explorer_view, inputs=[explorer_participant, explorer_question], outputs=outputs_explorer)
|
261 |
-
|
262 |
-
# Load initial state for all tabs when the app starts
|
263 |
demo.load(fn=update_rq1_visuals, inputs=[rq1_metric_dropdown], outputs=[rq1_plot_output, rq1_summary_output])
|
264 |
demo.load(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
|
265 |
|
|
|
54 |
self.combined_data = pd.concat(all_dfs, ignore_index=True)
|
55 |
self.combined_data.columns = self.combined_data.columns.str.strip()
|
56 |
|
|
|
57 |
self.et_id_col = next((c for c in self.combined_data.columns if 'participant' in c.lower()), 'Participant name')
|
58 |
resp_id_col = next((c for c in self.response_data.columns if 'participant' in c.lower()), 'Participant name')
|
59 |
|
|
|
73 |
|
74 |
self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
|
75 |
self.time_metrics = [c for c in self.numeric_cols if any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
|
|
|
76 |
|
77 |
+
# --- THIS IS THE CORRECTED LINE ---
|
78 |
+
# Convert all participant IDs to strings before sorting to handle mixed types.
|
79 |
+
self.participant_list = sorted([str(p) for p in self.combined_data[self.et_id_col].unique()])
|
80 |
+
# --- END OF CORRECTION ---
|
81 |
+
|
82 |
self.group_means = self.combined_data.groupby('Answer_Correctness')[self.numeric_cols].mean()
|
83 |
print("Data loading complete.")
|
84 |
return self
|
85 |
|
86 |
def analyze_rq1_metric(self, metric):
|
|
|
87 |
if not metric: return None, "Metric not found."
|
88 |
correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
|
89 |
incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
|
|
|
93 |
return fig, summary
|
94 |
|
95 |
def run_prediction_model(self, test_size, n_estimators):
|
|
|
96 |
leaky_features = ['Total_Correct', 'Overall_Accuracy', 'Correct', self.et_id_col]
|
97 |
self.feature_names = [col for col in self.numeric_cols if col not in leaky_features and col in self.combined_data.columns]
|
98 |
features = self.combined_data[self.feature_names].copy()
|
|
|
113 |
return summary_md, report_df, fig
|
114 |
|
115 |
def analyze_individual_trial(self, participant, question):
|
|
|
116 |
if not participant or not question:
|
117 |
return "Please select a participant and a question.", None, None
|
118 |
|
119 |
+
# Convert participant ID to string for matching, as the list is now all strings
|
120 |
+
trial_data = self.combined_data[(self.combined_data[self.et_id_col].astype(str) == str(participant)) & (self.combined_data['Question'] == question)]
|
121 |
if trial_data.empty:
|
122 |
return f"No data found for {participant} on {question}.", None, None
|
123 |
|
124 |
trial_data = trial_data.iloc[0]
|
125 |
actual_answer = trial_data['Answer_Correctness']
|
|
|
|
|
126 |
trial_features = trial_data[self.feature_names].values.reshape(1, -1)
|
127 |
trial_features_scaled = self.scaler.transform(trial_features)
|
128 |
prediction_prob = self.model.predict_proba(trial_features_scaled)[0]
|
129 |
predicted_answer = "Correct" if prediction_prob[1] > 0.5 else "Incorrect"
|
130 |
+
summary_md = f"""### Trial Breakdown: **{participant}** on **{question}**\n- **Actual Answer:** `{actual_answer}`\n- **Model Prediction:** `{predicted_answer}` (Confidence: {max(prediction_prob)*100:.1f}%)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
aoi_cols = [c for c in self.feature_names if ' A' in c or ' B' in c]
|
132 |
a_cols = sorted([c for c in aoi_cols if ' A' in c])
|
133 |
b_cols = sorted([c for c in aoi_cols if ' B' in c])
|
|
|
134 |
plot_data = []
|
135 |
for a_col, b_col in zip(a_cols, b_cols):
|
136 |
base_name = a_col.replace(' A', '')
|
137 |
plot_data.append({'AOI': base_name, 'Image': 'A', 'Value': trial_data[a_col]})
|
138 |
plot_data.append({'AOI': base_name, 'Image': 'B', 'Value': trial_data[b_col]})
|
|
|
139 |
fig, ax = plt.subplots(figsize=(10, 6))
|
140 |
if plot_data:
|
141 |
sns.barplot(data=pd.DataFrame(plot_data), x='Value', y='AOI', hue='Image', ax=ax, palette={'A': '#66b3ff', 'B': '#ff9999'})
|
|
|
143 |
else:
|
144 |
ax.text(0.5, 0.5, 'No A/B Area of Interest data for this question.', ha='center')
|
145 |
plt.tight_layout()
|
|
|
|
|
146 |
top_features = self.model.feature_importances_.argsort()[-5:][::-1]
|
147 |
top_feature_names = [self.feature_names[i] for i in top_features]
|
|
|
148 |
report_card_data = []
|
149 |
for feature in top_feature_names:
|
150 |
+
report_card_data.append({'Top Feature': feature, 'This Trial Value': f"{trial_data[feature]:.2f}", 'Avg (Correct)': f"{self.group_means.loc['Correct', feature]:.2f}", 'Avg (Incorrect)': f"{self.group_means.loc['Incorrect', feature]:.2f}"})
|
|
|
|
|
|
|
|
|
|
|
151 |
report_card_df = pd.DataFrame(report_card_data)
|
|
|
152 |
return summary_md, fig, report_card_df
|
153 |
|
154 |
+
# --- DATA SETUP ---
|
155 |
def setup_and_load_data():
|
|
|
156 |
repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
|
157 |
repo_dir = "GenAIEyeTrackingCleanedDataset"
|
158 |
if not os.path.exists(repo_dir):
|
|
|
187 |
# --- GRADIO INTERFACE DEFINITION ---
|
188 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
189 |
gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis\nExplore the eye-tracking dataset by interacting with the controls below. The data is automatically loaded from the public GitHub repository.")
|
|
|
190 |
with gr.Tabs():
|
|
|
191 |
with gr.TabItem("π RQ1: Viewing Time vs. Correctness"):
|
192 |
with gr.Row():
|
193 |
with gr.Column(scale=1):
|
|
|
195 |
rq1_summary_output = gr.Markdown(label="Statistical Summary")
|
196 |
with gr.Column(scale=2):
|
197 |
rq1_plot_output = gr.Plot(label="Metric Comparison")
|
|
|
|
|
198 |
with gr.TabItem("π€ RQ2: Predicting Correctness from Gaze"):
|
199 |
with gr.Row():
|
200 |
with gr.Column(scale=1):
|
|
|
205 |
rq2_summary_output = gr.Markdown(label="Model Performance Summary")
|
206 |
rq2_table_output = gr.Dataframe(label="Classification Report", interactive=False)
|
207 |
rq2_plot_output = gr.Plot(label="Feature Importance")
|
|
|
|
|
208 |
with gr.TabItem("π¬ Individual Trial Explorer"):
|
209 |
gr.Markdown("### Deep Dive into a Single Trial\nSelect a participant and a question to see a detailed breakdown of their gaze behavior.")
|
210 |
with gr.Row():
|
|
|
216 |
with gr.Column(scale=2):
|
217 |
explorer_plot = gr.Plot(label="Gaze Bias (Image A vs. B)")
|
218 |
|
|
|
219 |
outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output]
|
220 |
outputs_explorer = [explorer_summary, explorer_plot, explorer_report_card]
|
|
|
|
|
221 |
rq1_metric_dropdown.change(fn=update_rq1_visuals, inputs=[rq1_metric_dropdown], outputs=[rq1_plot_output, rq1_summary_output])
|
|
|
|
|
222 |
rq2_test_size_slider.release(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
|
223 |
rq2_estimators_slider.release(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
|
|
|
|
|
224 |
explorer_participant.change(fn=update_explorer_view, inputs=[explorer_participant, explorer_question], outputs=outputs_explorer)
|
225 |
explorer_question.change(fn=update_explorer_view, inputs=[explorer_participant, explorer_question], outputs=outputs_explorer)
|
|
|
|
|
226 |
demo.load(fn=update_rq1_visuals, inputs=[rq1_metric_dropdown], outputs=[rq1_plot_output, rq1_summary_output])
|
227 |
demo.load(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
|
228 |
|