Spaces:
Sleeping
Sleeping
File size: 7,047 Bytes
225cf8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
st.set_page_config(page_title="Interactive 12 Pubs of Christmas", layout="wide")
# ------------------------------------
# Parameters & Constants
# ------------------------------------
# Julia's data
julia_weight_lbs = 120
julia_weight_kg = julia_weight_lbs * 0.45359237
julia_weight_g = julia_weight_kg * 1000
julia_r = 0.55
# Sean's data
sean_weight_kg = 86.0
sean_weight_g = sean_weight_kg * 1000
sean_r = 0.68
beta = 0.015 # g/dL/h elimination rate
g_per_unit = 8
# Drink options
# We'll define a few drink types with their volumes and ABVs.
# For simplicity, we assume:
# - 1 UK pint = 568 ml
# - Half beer = Half pint = 284 ml
# - Shot = 30 ml
# - ABV is given in percentage.
# We'll approximate each drink's ethanol mass:
# Ethanol mass (g) = volume (ml) * density_of_ethanol(0.789 g/ml) * (ABV/100)
# For simplicity, we use a units-based approach:
# 1 unit (UK) = 10ml pure ethanol = 8g ethanol
# Units = (Volume in ml * ABV%) / 1000 (approx UK definition: 1 unit = 10ml pure ethanol)
# So ethanol in grams = Units * 8.
drink_options = {
"Guinness (Pint)": {"volume_ml": 568, "abv": 4.2},
"Heineken (Pint)": {"volume_ml": 568, "abv": 5.0},
"Stella Artois (Pint)": {"volume_ml": 568, "abv": 4.8},
"Half Beer (Generic)": {"volume_ml": 284, "abv": 4.0},
"Vodka Shot": {"volume_ml": 30, "abv": 40.0},
"Whiskey Shot": {"volume_ml": 30, "abv": 40.0},
"Cider (Pint)": {"volume_ml": 568, "abv": 4.5},
"Red Wine (175ml)": {"volume_ml": 175, "abv": 12.0}
}
# A function to calculate ethanol grams from a given drink
def alcohol_in_grams(volume_ml, abv_percent):
# 1 unit (UK) ~ (volume_ml * abv) / 1000 * (8g/unit)
units = (volume_ml * abv_percent) / 1000
return units * 8 # grams of ethanol
def bac_calculation(total_alcohol_g, W, r, t):
# Widmark formula approximation:
# BAC = (A/(W*r))*100 - beta*(t-1) if t>1
bac = (total_alcohol_g / (W * r)) * 100
if t > 1:
bac = bac - beta*(t-1)
return max(bac,0)
st.title("12 Pubs of Christmas - Interactive Drink Selection")
st.write("""
Select the drinks you (Julia) and Sean will consume each hour over a 6-hour period.
We'll estimate your BAC levels and show you comparisons.
**Note:** These are rough estimates and not medically accurate. Actual BAC varies by individual.
""")
hours = 6
col_drinks = st.columns(hours)
selected_drinks = []
st.subheader("Select Drinks for Each Hour")
for i in range(hours):
with col_drinks[i]:
drink_choice = st.selectbox(
f"Hour {i+1} Drink",
list(drink_options.keys()),
key=f"drink_hour_{i}"
)
selected_drinks.append(drink_choice)
# Calculate total alcohol consumed per hour
alcohol_by_hour = []
for i, d in enumerate(selected_drinks):
vol = drink_options[d]["volume_ml"]
abv = drink_options[d]["abv"]
grams = alcohol_in_grams(vol, abv)
alcohol_by_hour.append(grams)
# Cumulative alcohol and BAC calculations
time_points = list(range(hours+1)) # from 0 to 6
julia_bac = []
sean_bac = []
julia_alc_over_time = []
sean_alc_over_time = []
for t in time_points:
# total alcohol consumed up to hour t
total_alc = sum(alcohol_by_hour[:t])
# Julia BAC
julia_bac_val = bac_calculation(total_alc, julia_weight_g, julia_r, t)
julia_bac.append(julia_bac_val)
# Sean BAC
sean_bac_val = bac_calculation(total_alc, sean_weight_g, sean_r, t)
sean_bac.append(sean_bac_val)
df = pd.DataFrame({
"Hour": time_points,
"Julia_BAC": julia_bac,
"Sean_BAC": sean_bac,
"Total_Alcohol_Consumed_g": [sum(alcohol_by_hour[:t]) for t in time_points]
})
# Calculate difference
df["BAC_Difference"] = df["Julia_BAC"] - df["Sean_BAC"]
# Plot 1: BAC over time
st.subheader("BAC over Time")
fig_bac = go.Figure()
fig_bac.add_trace(go.Scatter(x=df["Hour"], y=df["Julia_BAC"], mode='lines+markers', name="Julia BAC", line=dict(color='firebrick', width=3)))
fig_bac.add_trace(go.Scatter(x=df["Hour"], y=df["Sean_BAC"], mode='lines+markers', name="Sean BAC", line=dict(color='royalblue', width=3)))
fig_bac.update_layout(title="Estimated BAC vs. Time (Hours)", xaxis_title="Hours", yaxis_title="BAC (%)", template="plotly_white")
st.plotly_chart(fig_bac, use_container_width=True)
# Plot 2: Alcohol consumed vs BAC (Dual-Axis)
st.subheader("Alcohol Consumed and BAC")
fig_bar_line = go.Figure()
# Bar for total alcohol consumed at each hour
fig_bar_line.add_trace(go.Bar(x=df["Hour"], y=df["Total_Alcohol_Consumed_g"], name="Total Alcohol (g)", marker_color='goldenrod', yaxis='y1'))
# Julia BAC line
fig_bar_line.add_trace(go.Scatter(x=df["Hour"], y=df["Julia_BAC"], name="Julia BAC", mode='lines+markers', line=dict(color='firebrick', width=3), yaxis='y2'))
# Sean BAC line
fig_bar_line.add_trace(go.Scatter(x=df["Hour"], y=df["Sean_BAC"], name="Sean BAC", mode='lines+markers', line=dict(color='royalblue', width=3), yaxis='y2'))
fig_bar_line.update_layout(
title="Total Alcohol (g) vs BAC (%) Over Time",
xaxis=dict(title="Hour"),
yaxis=dict(title="Total Alcohol (g)", side='left', range=[0, df["Total_Alcohol_Consumed_g"].max()*1.1]),
yaxis2=dict(title="BAC (%)", side='right', overlaying='y', range=[0, df[["Julia_BAC","Sean_BAC"]].max().max()*1.1]),
template="plotly_white"
)
st.plotly_chart(fig_bar_line, use_container_width=True)
# Plot 3: Difference in BAC
st.subheader("Difference in BAC (Julia - Sean)")
fig_diff = go.Figure(go.Bar(
x=df["Hour"],
y=df["BAC_Difference"],
text=[f"{d:.3f}%" for d in df["BAC_Difference"]],
textposition='outside',
marker_color='indianred'
))
fig_diff.update_layout(
title="Difference in BAC Between Julia and Sean Over Time",
xaxis_title="Hour",
yaxis_title="Difference in BAC (%)",
template="plotly_white"
)
st.plotly_chart(fig_diff, use_container_width=True)
# Plot 4: Pie/Donut Chart of Alcohol Proportions if needed
# For a bit of fun, let's compare the total alcohol consumed to their body weight as a fraction
st.subheader("Alcohol as a Percentage of Body Weight")
# 1g = 0.001 kg
julia_pct_body_weight = (df["Total_Alcohol_Consumed_g"].iloc[-1] / julia_weight_g)*100
sean_pct_body_weight = (df["Total_Alcohol_Consumed_g"].iloc[-1] / sean_weight_g)*100
donut_data = pd.DataFrame({
"Person": ["Julia", "Sean"],
"Alcohol_as_pct_body_weight": [julia_pct_body_weight, sean_pct_body_weight]
})
fig_donut = px.pie(donut_data, values='Alcohol_as_pct_body_weight', names='Person', hole=0.5,
color='Person', color_discrete_map={"Julia":"firebrick","Sean":"royalblue"})
fig_donut.update_layout(title="Alcohol Consumed as % of Body Weight", template="plotly_white")
st.plotly_chart(fig_donut, use_container_width=True)
st.write("""
**Disclaimer:**
These BAC values are rough estimates. Actual impairment depends on many factors including metabolism,
recent food intake, and individual tolerance. This tool is for illustrative purposes only.
""")
|