File size: 7,047 Bytes
225cf8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px

st.set_page_config(page_title="Interactive 12 Pubs of Christmas", layout="wide")

# ------------------------------------
# Parameters & Constants
# ------------------------------------
# Julia's data
julia_weight_lbs = 120
julia_weight_kg = julia_weight_lbs * 0.45359237
julia_weight_g = julia_weight_kg * 1000
julia_r = 0.55

# Sean's data
sean_weight_kg = 86.0
sean_weight_g = sean_weight_kg * 1000
sean_r = 0.68

beta = 0.015  # g/dL/h elimination rate
g_per_unit = 8

# Drink options
# We'll define a few drink types with their volumes and ABVs. 
# For simplicity, we assume:
# - 1 UK pint = 568 ml
# - Half beer = Half pint = 284 ml
# - Shot = 30 ml
# - ABV is given in percentage.
# We'll approximate each drink's ethanol mass:
# Ethanol mass (g) = volume (ml) * density_of_ethanol(0.789 g/ml) * (ABV/100)
# For simplicity, we use a units-based approach:
# 1 unit (UK) = 10ml pure ethanol = 8g ethanol
# Units = (Volume in ml * ABV%) / 1000 (approx UK definition: 1 unit = 10ml pure ethanol)
# So ethanol in grams = Units * 8.

drink_options = {
    "Guinness (Pint)": {"volume_ml": 568, "abv": 4.2},
    "Heineken (Pint)": {"volume_ml": 568, "abv": 5.0},
    "Stella Artois (Pint)": {"volume_ml": 568, "abv": 4.8},
    "Half Beer (Generic)": {"volume_ml": 284, "abv": 4.0},
    "Vodka Shot": {"volume_ml": 30, "abv": 40.0},
    "Whiskey Shot": {"volume_ml": 30, "abv": 40.0},
    "Cider (Pint)": {"volume_ml": 568, "abv": 4.5},
    "Red Wine (175ml)": {"volume_ml": 175, "abv": 12.0}
}

# A function to calculate ethanol grams from a given drink
def alcohol_in_grams(volume_ml, abv_percent):
    # 1 unit (UK) ~ (volume_ml * abv) / 1000 * (8g/unit)
    units = (volume_ml * abv_percent) / 1000
    return units * 8  # grams of ethanol

def bac_calculation(total_alcohol_g, W, r, t):
    # Widmark formula approximation:
    # BAC = (A/(W*r))*100 - beta*(t-1) if t>1
    bac = (total_alcohol_g / (W * r)) * 100
    if t > 1:
        bac = bac - beta*(t-1)
    return max(bac,0)

st.title("12 Pubs of Christmas - Interactive Drink Selection")

st.write("""
Select the drinks you (Julia) and Sean will consume each hour over a 6-hour period.
We'll estimate your BAC levels and show you comparisons.

**Note:** These are rough estimates and not medically accurate. Actual BAC varies by individual.
""")

hours = 6

col_drinks = st.columns(hours)
selected_drinks = []
st.subheader("Select Drinks for Each Hour")
for i in range(hours):
    with col_drinks[i]:
        drink_choice = st.selectbox(
            f"Hour {i+1} Drink",
            list(drink_options.keys()),
            key=f"drink_hour_{i}"
        )
        selected_drinks.append(drink_choice)

# Calculate total alcohol consumed per hour
alcohol_by_hour = []
for i, d in enumerate(selected_drinks):
    vol = drink_options[d]["volume_ml"]
    abv = drink_options[d]["abv"]
    grams = alcohol_in_grams(vol, abv)
    alcohol_by_hour.append(grams)

# Cumulative alcohol and BAC calculations
time_points = list(range(hours+1))  # from 0 to 6
julia_bac = []
sean_bac = []
julia_alc_over_time = []
sean_alc_over_time = []

for t in time_points:
    # total alcohol consumed up to hour t
    total_alc = sum(alcohol_by_hour[:t])
    # Julia BAC
    julia_bac_val = bac_calculation(total_alc, julia_weight_g, julia_r, t)
    julia_bac.append(julia_bac_val)
    # Sean BAC
    sean_bac_val = bac_calculation(total_alc, sean_weight_g, sean_r, t)
    sean_bac.append(sean_bac_val)

df = pd.DataFrame({
    "Hour": time_points,
    "Julia_BAC": julia_bac,
    "Sean_BAC": sean_bac,
    "Total_Alcohol_Consumed_g": [sum(alcohol_by_hour[:t]) for t in time_points]
})

# Calculate difference
df["BAC_Difference"] = df["Julia_BAC"] - df["Sean_BAC"]

# Plot 1: BAC over time
st.subheader("BAC over Time")
fig_bac = go.Figure()
fig_bac.add_trace(go.Scatter(x=df["Hour"], y=df["Julia_BAC"], mode='lines+markers', name="Julia BAC", line=dict(color='firebrick', width=3)))
fig_bac.add_trace(go.Scatter(x=df["Hour"], y=df["Sean_BAC"], mode='lines+markers', name="Sean BAC", line=dict(color='royalblue', width=3)))
fig_bac.update_layout(title="Estimated BAC vs. Time (Hours)", xaxis_title="Hours", yaxis_title="BAC (%)", template="plotly_white")
st.plotly_chart(fig_bac, use_container_width=True)

# Plot 2: Alcohol consumed vs BAC (Dual-Axis)
st.subheader("Alcohol Consumed and BAC")
fig_bar_line = go.Figure()

# Bar for total alcohol consumed at each hour
fig_bar_line.add_trace(go.Bar(x=df["Hour"], y=df["Total_Alcohol_Consumed_g"], name="Total Alcohol (g)", marker_color='goldenrod', yaxis='y1'))
# Julia BAC line
fig_bar_line.add_trace(go.Scatter(x=df["Hour"], y=df["Julia_BAC"], name="Julia BAC", mode='lines+markers', line=dict(color='firebrick', width=3), yaxis='y2'))
# Sean BAC line
fig_bar_line.add_trace(go.Scatter(x=df["Hour"], y=df["Sean_BAC"], name="Sean BAC", mode='lines+markers', line=dict(color='royalblue', width=3), yaxis='y2'))

fig_bar_line.update_layout(
    title="Total Alcohol (g) vs BAC (%) Over Time",
    xaxis=dict(title="Hour"),
    yaxis=dict(title="Total Alcohol (g)", side='left', range=[0, df["Total_Alcohol_Consumed_g"].max()*1.1]),
    yaxis2=dict(title="BAC (%)", side='right', overlaying='y', range=[0, df[["Julia_BAC","Sean_BAC"]].max().max()*1.1]),
    template="plotly_white"
)
st.plotly_chart(fig_bar_line, use_container_width=True)

# Plot 3: Difference in BAC
st.subheader("Difference in BAC (Julia - Sean)")
fig_diff = go.Figure(go.Bar(
    x=df["Hour"], 
    y=df["BAC_Difference"], 
    text=[f"{d:.3f}%" for d in df["BAC_Difference"]],
    textposition='outside',
    marker_color='indianred'
))
fig_diff.update_layout(
    title="Difference in BAC Between Julia and Sean Over Time",
    xaxis_title="Hour",
    yaxis_title="Difference in BAC (%)",
    template="plotly_white"
)
st.plotly_chart(fig_diff, use_container_width=True)

# Plot 4: Pie/Donut Chart of Alcohol Proportions if needed
# For a bit of fun, let's compare the total alcohol consumed to their body weight as a fraction
st.subheader("Alcohol as a Percentage of Body Weight")
# 1g = 0.001 kg
julia_pct_body_weight = (df["Total_Alcohol_Consumed_g"].iloc[-1] / julia_weight_g)*100
sean_pct_body_weight = (df["Total_Alcohol_Consumed_g"].iloc[-1] / sean_weight_g)*100

donut_data = pd.DataFrame({
    "Person": ["Julia", "Sean"],
    "Alcohol_as_pct_body_weight": [julia_pct_body_weight, sean_pct_body_weight]
})

fig_donut = px.pie(donut_data, values='Alcohol_as_pct_body_weight', names='Person', hole=0.5,
                   color='Person', color_discrete_map={"Julia":"firebrick","Sean":"royalblue"})
fig_donut.update_layout(title="Alcohol Consumed as % of Body Weight", template="plotly_white")
st.plotly_chart(fig_donut, use_container_width=True)

st.write("""
**Disclaimer:**  
These BAC values are rough estimates. Actual impairment depends on many factors including metabolism, 
recent food intake, and individual tolerance. This tool is for illustrative purposes only.
""")