Spaces:
Running
Running
File size: 7,140 Bytes
6364b8e 050a6c5 e88ec7e 06b2f35 e88ec7e 06b2f35 f88c19d 050a6c5 a870a21 e88ec7e a870a21 e88ec7e a870a21 f88c19d 1a642a1 f88c19d 1a642a1 f88c19d 1a642a1 f88c19d 1a642a1 f88c19d 1a642a1 f88c19d 1a642a1 f88c19d 1a642a1 e88ec7e f88c19d e88ec7e af90ec3 f88c19d af90ec3 275549c af90ec3 f88c19d af90ec3 f88c19d 275549c f88c19d af90ec3 e88ec7e be0d928 f88c19d e88ec7e f88c19d e88ec7e f88c19d 275549c 1a642a1 06b2f35 a870a21 06b2f35 a870a21 050a6c5 a870a21 e88ec7e 050a6c5 a870a21 050a6c5 a870a21 050a6c5 5ca31bc e88ec7e 5ca31bc e88ec7e f88c19d e88ec7e f88c19d e88ec7e f88c19d 1a642a1 e88ec7e cf9edec f88c19d e88ec7e f88c19d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc
from PIL import Image
import uuid
import tempfile
import pandas as pd
from numpy import exp
import numpy as np
from sklearn.metrics import ConfusionMatrixDisplay
import urllib.request
# Define model
model = "cmckinle/sdxl-flux-detector"
pipe = pipeline("image-classification", model)
fin_sum = []
uid = uuid.uuid4()
# Softmax function
def softmax(vector):
e = exp(vector - vector.max()) # for numerical stability
return e / e.sum()
# Single image classification function
def image_classifier(image):
labels = ["AI", "Real"]
outputs = pipe(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score'])
fin_sum.append(results)
return results
def aiornot(image):
labels = ["AI", "Real"]
feature_extractor = AutoFeatureExtractor.from_pretrained(model)
model_cls = AutoModelForImageClassification.from_pretrained(model)
input = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = model_cls(**input)
logits = outputs.logits
probability = softmax(logits)
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilities:<br>
Real: {float(px[1][0]):.4f}<br>
AI: {float(px[0][0]):.4f}"""
results = {
"Real": float(px[1][0]),
"AI": float(px[0][0])
}
fin_sum.append(results)
return gr.HTML.update(html_out), results
# Function to extract images from zip
def extract_zip(zip_file):
temp_dir = tempfile.mkdtemp()
with zipfile.ZipFile(zip_file, 'r') as z:
z.extractall(temp_dir)
return temp_dir
# Function to classify images in a folder
def classify_images(image_dir):
images = []
labels = []
preds = []
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(image_dir, folder_name)
if not os.path.exists(folder_path):
print(f"Folder not found: {folder_path}")
continue
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
img = Image.open(img_path).convert("RGB")
pred = pipe(img)
pred_label = 0 if pred[0]['label'] == 'AI' else 1
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
except Exception as e:
print(f"Error processing image {img_name}: {e}")
print(f"Processed {len(images)} images")
return labels, preds, images
# Function to generate evaluation metrics
def evaluate_model(labels, preds):
cm = confusion_matrix(labels, preds)
accuracy = accuracy_score(labels, preds)
roc_score = roc_auc_score(labels, preds)
report = classification_report(labels, preds)
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
fig, ax = plt.subplots()
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["AI", "Real"])
disp.plot(cmap=plt.cm.Blues, ax=ax)
plt.close(fig)
fig_roc, ax_roc = plt.subplots()
ax_roc.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
ax_roc.plot([0, 1], [0, 1], color='gray', linestyle='--')
ax_roc.set_xlim([0.0, 1.0])
ax_roc.set_ylim([0.0, 1.05])
ax_roc.set_xlabel('False Positive Rate')
ax_roc.set_ylabel('True Positive Rate')
ax_roc.set_title('Receiver Operating Characteristic (ROC) Curve')
ax_roc.legend(loc="lower right")
plt.close(fig_roc)
return accuracy, roc_score, report, fig, fig_roc
# Batch processing
def process_zip(zip_file):
extracted_dir = extract_zip(zip_file.name)
labels, preds, images = classify_images(extracted_dir)
accuracy, roc_score, report, cm_fig, roc_fig = evaluate_model(labels, preds)
shutil.rmtree(extracted_dir) # Clean up extracted files
return accuracy, roc_score, report, cm_fig, roc_fig
# Single image section
def load_url(url):
try:
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
image = Image.open(f"{uid}tmp_im.png")
mes = "Image Loaded"
except Exception as e:
image = None
mes = f"Image not Found<br>Error: {e}"
return image, mes
def tot_prob():
try:
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
fin_sub = 1 - fin_out
out = {
"Real": f"{fin_out:.4f}",
"AI": f"{fin_sub:.4f}"
}
return out
except Exception as e:
print(e)
return None
def fin_clear():
fin_sum.clear()
return None
# Set up Gradio app
with gr.Blocks() as app:
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></h1></center>""")
with gr.Tabs():
# Tab for single image detection
with gr.Tab("Single Image Detection"):
with gr.Column():
inp = gr.Image(type='pil')
in_url = gr.Textbox(label="Image URL")
with gr.Row():
load_btn = gr.Button("Load URL")
btn = gr.Button("Detect AI")
mes = gr.HTML("""""")
with gr.Group():
with gr.Row():
fin = gr.Label(label="Final Probability")
with gr.Row():
with gr.Box():
gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{model}'>{model}</a></b>""")
outp = gr.HTML("""""")
n_out = gr.Label(label="Output")
btn.click(fin_clear, None, fin, show_progress=False)
load_btn.click(load_url, in_url, [inp, mes])
btn.click(aiornot, [inp], [outp, n_out]).then(
tot_prob, None, fin, show_progress=False)
# Tab for batch processing
with gr.Tab("Batch Image Processing"):
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
batch_btn = gr.Button("Process Batch")
with gr.Group():
gr.Markdown(f"### Results for {model}")
output_acc = gr.Label(label="Accuracy")
output_roc = gr.Label(label="ROC Score")
output_report = gr.Textbox(label="Classification Report", lines=10)
output_cm = gr.Plot(label="Confusion Matrix")
output_roc_plot = gr.Plot(label="ROC Curve")
# Connect batch processing
batch_btn.click(process_zip, zip_file,
[output_acc, output_roc, output_report, output_cm, output_roc_plot])
app.launch(show_api=False, max_threads=24) |