Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline | |
import os | |
import zipfile | |
import shutil | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay | |
from PIL import Image | |
import tempfile | |
import numpy as np | |
import urllib.request | |
import base64 | |
from io import BytesIO | |
from reportlab.lib.pagesizes import letter | |
from reportlab.pdfgen import canvas | |
MODEL_NAME = "cmckinle/sdxl-flux-detector" | |
LABELS = ["AI", "Real"] | |
class AIDetector: | |
def __init__(self): | |
self.pipe = pipeline("image-classification", MODEL_NAME) | |
self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME) | |
self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME) | |
def softmax(vector): | |
e = np.exp(vector - np.max(vector)) | |
return e / e.sum() | |
def predict(self, image): | |
inputs = self.feature_extractor(image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
logits = outputs.logits | |
probabilities = self.softmax(logits.numpy()) | |
prediction = logits.argmax(-1).item() | |
label = LABELS[prediction] | |
results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])} | |
return label, results | |
def process_zip(zip_file): | |
temp_dir = tempfile.mkdtemp() | |
try: | |
with zipfile.ZipFile(zip_file.name, 'r') as z: | |
file_list = z.namelist() | |
if not ('real/' in file_list and 'ai/' in file_list): | |
raise ValueError("Zip file must contain 'real' and 'ai' folders") | |
z.extractall(temp_dir) | |
return evaluate_model(temp_dir) | |
except Exception as e: | |
raise gr.Error(f"Error processing zip file: {str(e)}") | |
finally: | |
shutil.rmtree(temp_dir) | |
def process_files(ai_files, real_files): | |
temp_dir = tempfile.mkdtemp() | |
try: | |
ai_folder = os.path.join(temp_dir, 'ai') | |
os.makedirs(ai_folder) | |
for file in ai_files: | |
shutil.copy(file.name, os.path.join(ai_folder, os.path.basename(file.name))) | |
real_folder = os.path.join(temp_dir, 'real') | |
os.makedirs(real_folder) | |
for file in real_files: | |
shutil.copy(file.name, os.path.join(real_folder, os.path.basename(file.name))) | |
return evaluate_model(temp_dir) | |
except Exception as e: | |
raise gr.Error(f"Error processing individual files: {str(e)}") | |
finally: | |
shutil.rmtree(temp_dir) | |
def evaluate_model(temp_dir): | |
labels, preds, images = [], [], [] | |
false_positives, false_negatives = [], [] | |
detector = AIDetector() | |
total_images = sum(len(files) for _, _, files in os.walk(temp_dir)) | |
processed_images = 0 | |
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]: | |
folder_path = os.path.join(temp_dir, folder_name) | |
if not os.path.exists(folder_path): | |
raise ValueError(f"Folder not found: {folder_path}") | |
for img_name in os.listdir(folder_path): | |
img_path = os.path.join(folder_path, img_name) | |
try: | |
with Image.open(img_path).convert("RGB") as img: | |
_, prediction = detector.predict(img) | |
pred_label = 0 if prediction["AI"] > prediction["Real"] else 1 | |
preds.append(pred_label) | |
labels.append(ground_truth_label) | |
images.append(img_name) | |
if pred_label != ground_truth_label: | |
with open(img_path, "rb") as img_file: | |
img_data = base64.b64encode(img_file.read()).decode() | |
if pred_label == 1 and ground_truth_label == 0: | |
false_positives.append((img_name, img_data)) | |
elif pred_label == 0 and ground_truth_label == 1: | |
false_negatives.append((img_name, img_data)) | |
except Exception as e: | |
print(f"Error processing image {img_name}: {e}") | |
processed_images += 1 | |
gr.Progress(processed_images / total_images) | |
return calculate_metrics(labels, preds, false_positives, false_negatives) | |
def calculate_metrics(labels, preds, false_positives, false_negatives): | |
cm = confusion_matrix(labels, preds) | |
accuracy = accuracy_score(labels, preds) | |
roc_score = roc_auc_score(labels, preds) | |
report_html = format_classification_report(labels, preds) | |
fpr, tpr, _ = roc_curve(labels, preds) | |
roc_auc = auc(fpr, tpr) | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6)) | |
ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1) | |
ax1.set_title("Confusion Matrix") | |
ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') | |
ax2.plot([0, 1], [0, 1], color='gray', linestyle='--') | |
ax2.set_xlim([0.0, 1.0]) | |
ax2.set_ylim([0.0, 1.05]) | |
ax2.set_xlabel('False Positive Rate') | |
ax2.set_ylabel('True Positive Rate') | |
ax2.set_title('ROC Curve') | |
ax2.legend(loc="lower right") | |
plt.tight_layout() | |
fp_fn_html = create_fp_fn_html(false_positives, false_negatives) | |
return accuracy, roc_score, report_html, fig, fp_fn_html | |
def format_classification_report(labels, preds): | |
report_dict = classification_report(labels, preds, output_dict=True) | |
html = """ | |
<table class="report-table"> | |
<tr> | |
<th>Class</th> | |
<th>Precision</th> | |
<th>Recall</th> | |
<th>F1-Score</th> | |
<th>Support</th> | |
</tr> | |
""" | |
for class_name in ['0', '1']: | |
html += f""" | |
<tr> | |
<td>{class_name}</td> | |
<td>{report_dict[class_name]['precision']:.2f}</td> | |
<td>{report_dict[class_name]['recall']:.2f}</td> | |
<td>{report_dict[class_name]['f1-score']:.2f}</td> | |
<td>{report_dict[class_name]['support']}</td> | |
</tr> | |
""" | |
html += f""" | |
<tr> | |
<td>Accuracy</td> | |
<td colspan="3">{report_dict['accuracy']:.2f}</td> | |
<td>{report_dict['macro avg']['support']}</td> | |
</tr> | |
</table> | |
""" | |
return html | |
def create_fp_fn_html(false_positives, false_negatives): | |
html = "<div class='image-grid'>" | |
for img_name, img_data in false_positives + false_negatives: | |
html += f""" | |
<div class="image-item"> | |
<img src="data:image/jpeg;base64,{img_data}" alt="{img_name}"> | |
<p>{img_name}</p> | |
</div> | |
""" | |
return html | |
def generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot): | |
buffer = BytesIO() | |
c = canvas.Canvas(buffer, pagesize=letter) | |
c.drawString(100, 750, f"Model Results") | |
c.drawString(100, 730, f"Accuracy: {accuracy:.2f}") | |
c.drawString(100, 710, f"ROC Score: {roc_score:.2f}") | |
y_position = 690 | |
for line in report_html.split('<tr>')[2:]: | |
if y_position < 50: | |
c.showPage() | |
y_position = 750 | |
c.drawString(100, y_position, line.strip()) | |
y_position -= 20 | |
img_buffer = BytesIO() | |
confusion_matrix_plot.savefig(img_buffer, format="png") | |
img_buffer.seek(0) | |
c.drawImage(img_buffer, 100, y_position - 250, width=400, height=300) | |
c.save() | |
buffer.seek(0) | |
return buffer | |
detector = AIDetector() | |
def create_gradio_interface(): | |
with gr.Blocks() as app: | |
gr.Markdown("""<center><h1>AI Image Detector</h1></center>""") | |
with gr.Tabs(): | |
with gr.Tab("Single Image Detection"): | |
inp = gr.Image(type='pil') | |
in_url = gr.Textbox(label="Image URL") | |
load_btn = gr.Button("Load URL") | |
btn = gr.Button("Detect AI") | |
message = gr.HTML() | |
output_html = gr.HTML() | |
output_label = gr.Label(label="Output") | |
with gr.Tab("Batch Image Processing"): | |
zip_file = gr.File(label="Upload Zip", file_types=[".zip"], file_count="single") | |
zip_process_btn = gr.Button("Process Zip") | |
ai_files = gr.File(label="Upload AI Images", file_types=["image"], file_count="multiple") | |
real_files = gr.File(label="Upload Real Images", file_types=["image"], file_count="multiple") | |
individual_process_btn = gr.Button("Process Individual Files") | |
output_acc = gr.Label(label="Accuracy") | |
output_roc = gr.Label(label="ROC Score") | |
output_report = gr.HTML(label="Classification Report") | |
output_plots = gr.Plot(label="Confusion Matrix and ROC Curve") | |
output_fp_fn = gr.HTML(label="False Positives and Negatives") | |
download_pdf_btn = gr.Button("Download Results as PDF") | |
pdf_output = gr.File(label="Download PDF", visible=False) | |
reset_btn = gr.Button("Reset") | |
load_btn.click(load_url, in_url, [inp, message]) | |
btn.click(lambda img: detector.predict(img), inp, [output_html, output_label]) | |
def on_download_pdf(accuracy, roc_score, report_html, confusion_matrix_plot): | |
pdf_buffer = generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot) | |
pdf_buffer.seek(0) | |
return pdf_buffer | |
download_pdf_btn.click( | |
on_download_pdf, | |
inputs=[output_acc, output_roc, output_report, output_plots], | |
outputs=pdf_output | |
) | |
zip_process_btn.click( | |
process_zip, | |
zip_file, | |
[output_acc, output_roc, output_report, output_plots, output_fp_fn] | |
) | |
individual_process_btn.click( | |
process_files, | |
[ai_files, real_files], | |
[output_acc, output_roc, output_report, output_plots, output_fp_fn] | |
) | |
return app | |
if __name__ == "__main__": | |
app = create_gradio_interface() | |
app.launch(show_api=False, max_threads=24, show_error=True) | |