ImageDetector / app.py
cmckinle's picture
Update app.py
23cf930 verified
raw
history blame
10.3 kB
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
from PIL import Image
import tempfile
import numpy as np
import urllib.request
import base64
from io import BytesIO
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
MODEL_NAME = "cmckinle/sdxl-flux-detector"
LABELS = ["AI", "Real"]
class AIDetector:
def __init__(self):
self.pipe = pipeline("image-classification", MODEL_NAME)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
@staticmethod
def softmax(vector):
e = np.exp(vector - np.max(vector))
return e / e.sum()
def predict(self, image):
inputs = self.feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = self.softmax(logits.numpy())
prediction = logits.argmax(-1).item()
label = LABELS[prediction]
results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
return label, results
def process_zip(zip_file):
temp_dir = tempfile.mkdtemp()
try:
with zipfile.ZipFile(zip_file.name, 'r') as z:
file_list = z.namelist()
if not ('real/' in file_list and 'ai/' in file_list):
raise ValueError("Zip file must contain 'real' and 'ai' folders")
z.extractall(temp_dir)
return evaluate_model(temp_dir)
except Exception as e:
raise gr.Error(f"Error processing zip file: {str(e)}")
finally:
shutil.rmtree(temp_dir)
def process_files(ai_files, real_files):
temp_dir = tempfile.mkdtemp()
try:
ai_folder = os.path.join(temp_dir, 'ai')
os.makedirs(ai_folder)
for file in ai_files:
shutil.copy(file.name, os.path.join(ai_folder, os.path.basename(file.name)))
real_folder = os.path.join(temp_dir, 'real')
os.makedirs(real_folder)
for file in real_files:
shutil.copy(file.name, os.path.join(real_folder, os.path.basename(file.name)))
return evaluate_model(temp_dir)
except Exception as e:
raise gr.Error(f"Error processing individual files: {str(e)}")
finally:
shutil.rmtree(temp_dir)
def evaluate_model(temp_dir):
labels, preds, images = [], [], []
false_positives, false_negatives = [], []
detector = AIDetector()
total_images = sum(len(files) for _, _, files in os.walk(temp_dir))
processed_images = 0
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(temp_dir, folder_name)
if not os.path.exists(folder_path):
raise ValueError(f"Folder not found: {folder_path}")
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
with Image.open(img_path).convert("RGB") as img:
_, prediction = detector.predict(img)
pred_label = 0 if prediction["AI"] > prediction["Real"] else 1
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
if pred_label != ground_truth_label:
with open(img_path, "rb") as img_file:
img_data = base64.b64encode(img_file.read()).decode()
if pred_label == 1 and ground_truth_label == 0:
false_positives.append((img_name, img_data))
elif pred_label == 0 and ground_truth_label == 1:
false_negatives.append((img_name, img_data))
except Exception as e:
print(f"Error processing image {img_name}: {e}")
processed_images += 1
gr.Progress(processed_images / total_images)
return calculate_metrics(labels, preds, false_positives, false_negatives)
def calculate_metrics(labels, preds, false_positives, false_negatives):
cm = confusion_matrix(labels, preds)
accuracy = accuracy_score(labels, preds)
roc_score = roc_auc_score(labels, preds)
report_html = format_classification_report(labels, preds)
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1)
ax1.set_title("Confusion Matrix")
ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
ax2.plot([0, 1], [0, 1], color='gray', linestyle='--')
ax2.set_xlim([0.0, 1.0])
ax2.set_ylim([0.0, 1.05])
ax2.set_xlabel('False Positive Rate')
ax2.set_ylabel('True Positive Rate')
ax2.set_title('ROC Curve')
ax2.legend(loc="lower right")
plt.tight_layout()
fp_fn_html = create_fp_fn_html(false_positives, false_negatives)
return accuracy, roc_score, report_html, fig, fp_fn_html
def format_classification_report(labels, preds):
report_dict = classification_report(labels, preds, output_dict=True)
html = """
<table class="report-table">
<tr>
<th>Class</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Support</th>
</tr>
"""
for class_name in ['0', '1']:
html += f"""
<tr>
<td>{class_name}</td>
<td>{report_dict[class_name]['precision']:.2f}</td>
<td>{report_dict[class_name]['recall']:.2f}</td>
<td>{report_dict[class_name]['f1-score']:.2f}</td>
<td>{report_dict[class_name]['support']}</td>
</tr>
"""
html += f"""
<tr>
<td>Accuracy</td>
<td colspan="3">{report_dict['accuracy']:.2f}</td>
<td>{report_dict['macro avg']['support']}</td>
</tr>
</table>
"""
return html
def create_fp_fn_html(false_positives, false_negatives):
html = "<div class='image-grid'>"
for img_name, img_data in false_positives + false_negatives:
html += f"""
<div class="image-item">
<img src="data:image/jpeg;base64,{img_data}" alt="{img_name}">
<p>{img_name}</p>
</div>
"""
return html
def generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot):
buffer = BytesIO()
c = canvas.Canvas(buffer, pagesize=letter)
c.drawString(100, 750, f"Model Results")
c.drawString(100, 730, f"Accuracy: {accuracy:.2f}")
c.drawString(100, 710, f"ROC Score: {roc_score:.2f}")
y_position = 690
for line in report_html.split('<tr>')[2:]:
if y_position < 50:
c.showPage()
y_position = 750
c.drawString(100, y_position, line.strip())
y_position -= 20
img_buffer = BytesIO()
confusion_matrix_plot.savefig(img_buffer, format="png")
img_buffer.seek(0)
c.drawImage(img_buffer, 100, y_position - 250, width=400, height=300)
c.save()
buffer.seek(0)
return buffer
detector = AIDetector()
def create_gradio_interface():
with gr.Blocks() as app:
gr.Markdown("""<center><h1>AI Image Detector</h1></center>""")
with gr.Tabs():
with gr.Tab("Single Image Detection"):
inp = gr.Image(type='pil')
in_url = gr.Textbox(label="Image URL")
load_btn = gr.Button("Load URL")
btn = gr.Button("Detect AI")
message = gr.HTML()
output_html = gr.HTML()
output_label = gr.Label(label="Output")
with gr.Tab("Batch Image Processing"):
zip_file = gr.File(label="Upload Zip", file_types=[".zip"], file_count="single")
zip_process_btn = gr.Button("Process Zip")
ai_files = gr.File(label="Upload AI Images", file_types=["image"], file_count="multiple")
real_files = gr.File(label="Upload Real Images", file_types=["image"], file_count="multiple")
individual_process_btn = gr.Button("Process Individual Files")
output_acc = gr.Label(label="Accuracy")
output_roc = gr.Label(label="ROC Score")
output_report = gr.HTML(label="Classification Report")
output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
output_fp_fn = gr.HTML(label="False Positives and Negatives")
download_pdf_btn = gr.Button("Download Results as PDF")
pdf_output = gr.File(label="Download PDF", visible=False)
reset_btn = gr.Button("Reset")
load_btn.click(load_url, in_url, [inp, message])
btn.click(lambda img: detector.predict(img), inp, [output_html, output_label])
def on_download_pdf(accuracy, roc_score, report_html, confusion_matrix_plot):
pdf_buffer = generate_pdf(accuracy, roc_score, report_html, confusion_matrix_plot)
pdf_buffer.seek(0)
return pdf_buffer
download_pdf_btn.click(
on_download_pdf,
inputs=[output_acc, output_roc, output_report, output_plots],
outputs=pdf_output
)
zip_process_btn.click(
process_zip,
zip_file,
[output_acc, output_roc, output_report, output_plots, output_fp_fn]
)
individual_process_btn.click(
process_files,
[ai_files, real_files],
[output_acc, output_roc, output_report, output_plots, output_fp_fn]
)
return app
if __name__ == "__main__":
app = create_gradio_interface()
app.launch(show_api=False, max_threads=24, show_error=True)