ImageDetector / app.py_old
cmckinle's picture
Rename app.py to app.py_old
aefc9b9 verified
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
from PIL import Image
import tempfile
import numpy as np
import urllib.request
import base64
from io import BytesIO
MODEL_NAME = "cmckinle/sdxl-flux-detector"
LABELS = ["AI", "Real"]
class AIDetector:
def __init__(self):
self.pipe = pipeline("image-classification", MODEL_NAME)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
@staticmethod
def softmax(vector):
e = np.exp(vector - np.max(vector))
return e / e.sum()
def predict(self, image):
inputs = self.feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = self.softmax(logits.numpy())
prediction = logits.argmax(-1).item()
label = LABELS[prediction]
results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
return label, results
def process_zip(zip_file):
temp_dir = tempfile.mkdtemp()
try:
# Validate zip structure
with zipfile.ZipFile(zip_file.name, 'r') as z:
file_list = z.namelist()
if not ('real/' in file_list and 'ai/' in file_list):
raise ValueError("Zip file must contain 'real' and 'ai' folders")
z.extractall(temp_dir)
return evaluate_model(temp_dir)
except Exception as e:
raise gr.Error(f"Error processing zip file: {str(e)}")
finally:
shutil.rmtree(temp_dir)
def process_files(ai_files, real_files):
temp_dir = tempfile.mkdtemp()
try:
# Process AI files
ai_folder = os.path.join(temp_dir, 'ai')
os.makedirs(ai_folder)
for file in ai_files:
shutil.copy(file.name, os.path.join(ai_folder, os.path.basename(file.name)))
# Process Real files
real_folder = os.path.join(temp_dir, 'real')
os.makedirs(real_folder)
for file in real_files:
shutil.copy(file.name, os.path.join(real_folder, os.path.basename(file.name)))
return evaluate_model(temp_dir)
except Exception as e:
raise gr.Error(f"Error processing individual files: {str(e)}")
finally:
shutil.rmtree(temp_dir)
def evaluate_model(temp_dir):
labels, preds, images = [], [], []
false_positives, false_negatives = [], []
detector = AIDetector()
total_images = sum(len(files) for _, _, files in os.walk(temp_dir))
processed_images = 0
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(temp_dir, folder_name)
if not os.path.exists(folder_path):
raise ValueError(f"Folder not found: {folder_path}")
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
with Image.open(img_path).convert("RGB") as img:
_, prediction = detector.predict(img)
pred_label = 0 if prediction["AI"] > prediction["Real"] else 1
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
# Collect false positives and false negatives with image data
if pred_label != ground_truth_label:
with open(img_path, "rb") as img_file:
img_data = base64.b64encode(img_file.read()).decode()
if pred_label == 1 and ground_truth_label == 0:
false_positives.append((img_name, img_data))
elif pred_label == 0 and ground_truth_label == 1:
false_negatives.append((img_name, img_data))
except Exception as e:
print(f"Error processing image {img_name}: {e}")
processed_images += 1
gr.Progress(processed_images / total_images)
return calculate_metrics(labels, preds, false_positives, false_negatives)
def calculate_metrics(labels, preds, false_positives, false_negatives):
cm = confusion_matrix(labels, preds)
accuracy = accuracy_score(labels, preds)
roc_score = roc_auc_score(labels, preds)
report_html = format_classification_report(labels, preds)
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1)
ax1.set_title("Confusion Matrix")
ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
ax2.plot([0, 1], [0, 1], color='gray', linestyle='--')
ax2.set_xlim([0.0, 1.0])
ax2.set_ylim([0.0, 1.05])
ax2.set_xlabel('False Positive Rate')
ax2.set_ylabel('True Positive Rate')
ax2.set_title('ROC Curve')
ax2.legend(loc="lower right")
plt.tight_layout()
fp_fn_html = create_fp_fn_html(false_positives, false_negatives)
return accuracy, roc_score, report_html, fig, fp_fn_html
def format_classification_report(labels, preds):
report_dict = classification_report(labels, preds, output_dict=True)
html = """
<style>
.report-table {
border-collapse: collapse;
width: 100%;
font-family: Arial, sans-serif;
}
.report-table th, .report-table td {
border: 1px solid;
padding: 8px;
text-align: center;
}
.report-table th {
font-weight: bold;
}
.report-table tr:nth-child(even) {
background-color: rgba(0, 0, 0, 0.05);
}
@media (prefers-color-scheme: dark) {
.report-table {
color: #e0e0e0;
background-color: #2d2d2d;
}
.report-table th, .report-table td {
border-color: #555;
}
.report-table th {
background-color: #3d3d3d;
}
.report-table tr:nth-child(even) {
background-color: #333;
}
.report-table tr:hover {
background-color: #3a3a3a;
}
}
@media (prefers-color-scheme: light) {
.report-table {
color: #333333;
background-color: #ffffff;
}
.report-table th, .report-table td {
border-color: #ddd;
}
.report-table th {
background-color: #f2f2f2;
}
.report-table tr:nth-child(even) {
background-color: #f9f9f9;
}
.report-table tr:hover {
background-color: #f5f5f5;
}
}
</style>
<table class="report-table">
<tr>
<th>Class</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Support</th>
</tr>
"""
for class_name in ['0', '1']:
html += f"""
<tr>
<td>{class_name}</td>
<td>{report_dict[class_name]['precision']:.2f}</td>
<td>{report_dict[class_name]['recall']:.2f}</td>
<td>{report_dict[class_name]['f1-score']:.2f}</td>
<td>{report_dict[class_name]['support']}</td>
</tr>
"""
html += f"""
<tr>
<td>Accuracy</td>
<td colspan="3">{report_dict['accuracy']:.2f}</td>
<td>{report_dict['macro avg']['support']}</td>
</tr>
<tr>
<td>Macro Avg</td>
<td>{report_dict['macro avg']['precision']:.2f}</td>
<td>{report_dict['macro avg']['recall']:.2f}</td>
<td>{report_dict['macro avg']['f1-score']:.2f}</td>
<td>{report_dict['macro avg']['support']}</td>
</tr>
<tr>
<td>Weighted Avg</td>
<td>{report_dict['weighted avg']['precision']:.2f}</td>
<td>{report_dict['weighted avg']['recall']:.2f}</td>
<td>{report_dict['weighted avg']['f1-score']:.2f}</td>
<td>{report_dict['weighted avg']['support']}</td>
</tr>
</table>
"""
return html
def create_fp_fn_html(false_positives, false_negatives):
html = """
<style>
.image-grid {
display: flex;
flex-wrap: wrap;
gap: 10px;
}
.image-item {
display: flex;
flex-direction: column;
align-items: center;
}
.image-item img {
max-width: 200px;
max-height: 200px;
}
</style>
"""
html += "<h3>False Positives (AI images classified as Real):</h3>"
html += '<div class="image-grid">'
for img_name, img_data in false_positives:
html += f'''
<div class="image-item">
<img src="data:image/jpeg;base64,{img_data}" alt="{img_name}">
<p>{img_name}</p>
</div>
'''
html += '</div>'
html += "<h3>False Negatives (Real images classified as AI):</h3>"
html += '<div class="image-grid">'
for img_name, img_data in false_negatives:
html += f'''
<div class="image-item">
<img src="data:image/jpeg;base64,{img_data}" alt="{img_name}">
<p>{img_name}</p>
</div>
'''
html += '</div>'
return html
def load_url(url):
try:
urllib.request.urlretrieve(url, "temp_image.png")
image = Image.open("temp_image.png")
message = "Image Loaded"
except Exception as e:
image = None
message = f"Image not Found<br>Error: {e}"
return image, message
detector = AIDetector()
def create_gradio_interface():
with gr.Blocks() as app:
gr.Markdown("""<center><h1>AI Image Detector</h1></center>""")
with gr.Tabs():
with gr.Tab("Single Image Detection"):
with gr.Column():
inp = gr.Image(type='pil')
in_url = gr.Textbox(label="Image URL")
with gr.Row():
load_btn = gr.Button("Load URL")
btn = gr.Button("Detect AI")
message = gr.HTML()
with gr.Group():
with gr.Box():
gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{MODEL_NAME}'>{MODEL_NAME}</a></b>""")
output_html = gr.HTML()
output_label = gr.Label(label="Output")
with gr.Tab("Batch Image Processing"):
with gr.Accordion("Upload Zip File (max 100MB)", open=False):
zip_file = gr.File(
label="Upload Zip (must contain 'real' and 'ai' folders)",
file_types=[".zip"],
file_count="single",
max_file_size=100 # 100 MB limit
)
zip_process_btn = gr.Button("Process Zip", interactive=False)
with gr.Accordion("Upload Individual Files (for datasets over 100MB)", open=False):
with gr.Row():
ai_files = gr.File(
label="Upload AI Images",
file_types=["image"],
file_count="multiple"
)
real_files = gr.File(
label="Upload Real Images",
file_types=["image"],
file_count="multiple"
)
individual_process_btn = gr.Button("Process Individual Files", interactive=False)
with gr.Group():
gr.Markdown(f"### Results for {MODEL_NAME}")
output_acc = gr.Label(label="Accuracy")
output_roc = gr.Label(label="ROC Score")
output_report = gr.HTML(label="Classification Report")
output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
output_fp_fn = gr.HTML(label="False Positives and Negatives")
reset_btn = gr.Button("Reset")
load_btn.click(load_url, in_url, [inp, message])
btn.click(
lambda img: detector.predict(img),
inp,
[output_html, output_label]
)
def enable_zip_btn(file):
return gr.Button.update(interactive=file is not None)
def enable_individual_btn(ai_files, real_files):
return gr.Button.update(interactive=(ai_files is not None and real_files is not None))
zip_file.upload(enable_zip_btn, zip_file, zip_process_btn)
ai_files.upload(enable_individual_btn, [ai_files, real_files], individual_process_btn)
real_files.upload(enable_individual_btn, [ai_files, real_files], individual_process_btn)
zip_process_btn.click(
process_zip,
zip_file,
[output_acc, output_roc, output_report, output_plots, output_fp_fn]
)
individual_process_btn.click(
process_files,
[ai_files, real_files],
[output_acc, output_roc, output_report, output_plots, output_fp_fn]
)
def reset_interface():
return [
None, None, None, None, None, # Reset inputs
gr.Button.update(interactive=False), # Reset zip process button
gr.Button.update(interactive=False), # Reset individual process button
None, None, None, None, None # Reset outputs
]
reset_btn.click(
reset_interface,
inputs=None,
outputs=[
zip_file, ai_files, real_files,
output_acc, output_roc, output_report, output_plots, output_fp_fn,
zip_process_btn, individual_process_btn
]
)
return app
if __name__ == "__main__":
app = create_gradio_interface()
app.launch(
show_api=False,
max_threads=24,
show_error=True
)