File size: 14,778 Bytes
6364b8e
 
050a6c5
e88ec7e
 
 
 
773268b
06b2f35
e88ec7e
 
 
12fbe49
 
06b2f35
773268b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f88c19d
773268b
1e15008
 
 
 
 
 
 
 
 
1d7c27a
1e15008
 
 
275549c
1e15008
 
e88ec7e
1d7c27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80bc071
24dd2a8
 
80bc071
 
 
 
 
 
 
 
c1f19b9
80bc071
 
 
 
 
 
 
c1f19b9
80bc071
c1f19b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80bc071
 
 
 
 
 
 
 
 
 
 
24dd2a8
80bc071
 
 
 
 
 
 
 
 
 
24dd2a8
80bc071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24dd2a8
80bc071
773268b
1d7c27a
 
12fbe49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7c27a
 
12fbe49
1d7c27a
12fbe49
 
 
 
 
1d7c27a
12fbe49
1d7c27a
 
12fbe49
1d7c27a
12fbe49
 
 
 
 
1d7c27a
12fbe49
1d7c27a
275549c
06b2f35
 
773268b
 
 
06b2f35
a870a21
773268b
 
 
 
 
 
 
dfcd1e8
773268b
 
 
 
 
 
 
 
 
 
 
 
a38dfd7
 
 
 
773268b
 
1d7c27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
773268b
 
 
 
 
80bc071
773268b
12fbe49
773268b
2e039a9
 
773268b
 
 
 
 
 
 
1d7c27a
57e8402
 
2e039a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
from PIL import Image
import tempfile
import numpy as np
import urllib.request
import base64
from io import BytesIO

MODEL_NAME = "cmckinle/sdxl-flux-detector"
LABELS = ["AI", "Real"]

class AIDetector:
    def __init__(self):
        self.pipe = pipeline("image-classification", MODEL_NAME)
        self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
        self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)

    @staticmethod
    def softmax(vector):
        e = np.exp(vector - np.max(vector))
        return e / e.sum()

    def predict(self, image):
        inputs = self.feature_extractor(image, return_tensors="pt")
        with torch.no_grad():
            outputs = self.model(**inputs)
            logits = outputs.logits
            probabilities = self.softmax(logits.numpy())
        
        prediction = logits.argmax(-1).item()
        label = LABELS[prediction]
        
        results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
        
        return label, results

def process_zip(zip_file):
    temp_dir = tempfile.mkdtemp()
    
    try:
        # Validate zip structure
        with zipfile.ZipFile(zip_file.name, 'r') as z:
            file_list = z.namelist()
            if not ('real/' in file_list and 'ai/' in file_list):
                raise ValueError("Zip file must contain 'real' and 'ai' folders")
            
            z.extractall(temp_dir)
        
        return evaluate_model(temp_dir)
    
    except Exception as e:
        raise gr.Error(f"Error processing zip file: {str(e)}")
    
    finally:
        shutil.rmtree(temp_dir)

def process_files(ai_files, real_files):
    temp_dir = tempfile.mkdtemp()
    try:
        # Process AI files
        ai_folder = os.path.join(temp_dir, 'ai')
        os.makedirs(ai_folder)
        for file in ai_files:
            shutil.copy(file.name, os.path.join(ai_folder, os.path.basename(file.name)))

        # Process Real files
        real_folder = os.path.join(temp_dir, 'real')
        os.makedirs(real_folder)
        for file in real_files:
            shutil.copy(file.name, os.path.join(real_folder, os.path.basename(file.name)))

        return evaluate_model(temp_dir)
    except Exception as e:
        raise gr.Error(f"Error processing individual files: {str(e)}")
    finally:
        shutil.rmtree(temp_dir)

def evaluate_model(temp_dir):
    labels, preds, images = [], [], []
    false_positives, false_negatives = [], []
    detector = AIDetector()
    
    total_images = sum(len(files) for _, _, files in os.walk(temp_dir))
    processed_images = 0
    
    for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
        folder_path = os.path.join(temp_dir, folder_name)
        if not os.path.exists(folder_path):
            raise ValueError(f"Folder not found: {folder_path}")
        
        for img_name in os.listdir(folder_path):
            img_path = os.path.join(folder_path, img_name)
            try:
                with Image.open(img_path).convert("RGB") as img:
                    _, prediction = detector.predict(img)
                
                pred_label = 0 if prediction["AI"] > prediction["Real"] else 1
                
                preds.append(pred_label)
                labels.append(ground_truth_label)
                images.append(img_name)

                # Collect false positives and false negatives with image data
                if pred_label != ground_truth_label:
                    with open(img_path, "rb") as img_file:
                        img_data = base64.b64encode(img_file.read()).decode()
                    if pred_label == 1 and ground_truth_label == 0:
                        false_positives.append((img_name, img_data))
                    elif pred_label == 0 and ground_truth_label == 1:
                        false_negatives.append((img_name, img_data))

            except Exception as e:
                print(f"Error processing image {img_name}: {e}")
            
            processed_images += 1
            gr.Progress(processed_images / total_images)
    
    return calculate_metrics(labels, preds, false_positives, false_negatives)

def calculate_metrics(labels, preds, false_positives, false_negatives):
    cm = confusion_matrix(labels, preds)
    accuracy = accuracy_score(labels, preds)
    roc_score = roc_auc_score(labels, preds)
    report_html = format_classification_report(labels, preds)
    fpr, tpr, _ = roc_curve(labels, preds)
    roc_auc = auc(fpr, tpr)

    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
    
    ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1)
    ax1.set_title("Confusion Matrix")
    
    ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
    ax2.plot([0, 1], [0, 1], color='gray', linestyle='--')
    ax2.set_xlim([0.0, 1.0])
    ax2.set_ylim([0.0, 1.05])
    ax2.set_xlabel('False Positive Rate')
    ax2.set_ylabel('True Positive Rate')
    ax2.set_title('ROC Curve')
    ax2.legend(loc="lower right")
    
    plt.tight_layout()

    fp_fn_html = create_fp_fn_html(false_positives, false_negatives)

    return accuracy, roc_score, report_html, fig, fp_fn_html

def format_classification_report(labels, preds):
    report_dict = classification_report(labels, preds, output_dict=True)
    
    html = """
    <style>
        .report-table {
            border-collapse: collapse;
            width: 100%;
            font-family: Arial, sans-serif;
        }
        .report-table th, .report-table td {
            border: 1px solid;
            padding: 8px;
            text-align: center;
        }
        .report-table th {
            font-weight: bold;
        }
        .report-table tr:nth-child(even) {
            background-color: rgba(0, 0, 0, 0.05);
        }
        @media (prefers-color-scheme: dark) {
            .report-table {
                color: #e0e0e0;
                background-color: #2d2d2d;
            }
            .report-table th, .report-table td {
                border-color: #555;
            }
            .report-table th {
                background-color: #3d3d3d;
            }
            .report-table tr:nth-child(even) {
                background-color: #333;
            }
            .report-table tr:hover {
                background-color: #3a3a3a;
            }
        }
        @media (prefers-color-scheme: light) {
            .report-table {
                color: #333333;
                background-color: #ffffff;
            }
            .report-table th, .report-table td {
                border-color: #ddd;
            }
            .report-table th {
                background-color: #f2f2f2;
            }
            .report-table tr:nth-child(even) {
                background-color: #f9f9f9;
            }
            .report-table tr:hover {
                background-color: #f5f5f5;
            }
        }
    </style>
    <table class="report-table">
        <tr>
            <th>Class</th>
            <th>Precision</th>
            <th>Recall</th>
            <th>F1-Score</th>
            <th>Support</th>
        </tr>
    """
    
    for class_name in ['0', '1']:
        html += f"""
        <tr>
            <td>{class_name}</td>
            <td>{report_dict[class_name]['precision']:.2f}</td>
            <td>{report_dict[class_name]['recall']:.2f}</td>
            <td>{report_dict[class_name]['f1-score']:.2f}</td>
            <td>{report_dict[class_name]['support']}</td>
        </tr>
        """
    
    html += f"""
        <tr>
            <td>Accuracy</td>
            <td colspan="3">{report_dict['accuracy']:.2f}</td>
            <td>{report_dict['macro avg']['support']}</td>
        </tr>
        <tr>
            <td>Macro Avg</td>
            <td>{report_dict['macro avg']['precision']:.2f}</td>
            <td>{report_dict['macro avg']['recall']:.2f}</td>
            <td>{report_dict['macro avg']['f1-score']:.2f}</td>
            <td>{report_dict['macro avg']['support']}</td>
        </tr>
        <tr>
            <td>Weighted Avg</td>
            <td>{report_dict['weighted avg']['precision']:.2f}</td>
            <td>{report_dict['weighted avg']['recall']:.2f}</td>
            <td>{report_dict['weighted avg']['f1-score']:.2f}</td>
            <td>{report_dict['weighted avg']['support']}</td>
        </tr>
    </table>
    """
    
    return html

def create_fp_fn_html(false_positives, false_negatives):
    html = """
    <style>
        .image-grid {
            display: flex;
            flex-wrap: wrap;
            gap: 10px;
        }
        .image-item {
            display: flex;
            flex-direction: column;
            align-items: center;
        }
        .image-item img {
            max-width: 200px;
            max-height: 200px;
        }
    </style>
    """

    html += "<h3>False Positives (AI images classified as Real):</h3>"
    html += '<div class="image-grid">'
    for img_name, img_data in false_positives:
        html += f'''
        <div class="image-item">
            <img src="data:image/jpeg;base64,{img_data}" alt="{img_name}">
            <p>{img_name}</p>
        </div>
        '''
    html += '</div>'

    html += "<h3>False Negatives (Real images classified as AI):</h3>"
    html += '<div class="image-grid">'
    for img_name, img_data in false_negatives:
        html += f'''
        <div class="image-item">
            <img src="data:image/jpeg;base64,{img_data}" alt="{img_name}">
            <p>{img_name}</p>
        </div>
        '''
    html += '</div>'

    return html

def load_url(url):
    try:
        urllib.request.urlretrieve(url, "temp_image.png")
        image = Image.open("temp_image.png")
        message = "Image Loaded"
    except Exception as e:
        image = None
        message = f"Image not Found<br>Error: {e}"
    return image, message

detector = AIDetector()

def create_gradio_interface():
    with gr.Blocks() as app:
        gr.Markdown("""<center><h1>AI Image Detector</h1></center>""")

        with gr.Tabs():
            with gr.Tab("Single Image Detection"):
                with gr.Column():
                    inp = gr.Image(type='pil')
                    in_url = gr.Textbox(label="Image URL")
                    with gr.Row():
                        load_btn = gr.Button("Load URL")
                        btn = gr.Button("Detect AI")
                    message = gr.HTML()

                with gr.Group():
                    with gr.Box():
                        gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{MODEL_NAME}'>{MODEL_NAME}</a></b>""")
                        output_html = gr.HTML()
                        output_label = gr.Label(label="Output")

            with gr.Tab("Batch Image Processing"):
                with gr.Accordion("Upload Zip File (max 100MB)", open=False):
                    zip_file = gr.File(
                        label="Upload Zip (must contain 'real' and 'ai' folders)",
                        file_types=[".zip"],
                        file_count="single",
                        max_file_size=100  # 100 MB limit
                    )
                    zip_process_btn = gr.Button("Process Zip", interactive=False)

                with gr.Accordion("Upload Individual Files (for datasets over 100MB)", open=False):
                    with gr.Row():
                        ai_files = gr.File(
                            label="Upload AI Images",
                            file_types=["image"],
                            file_count="multiple"
                        )
                        real_files = gr.File(
                            label="Upload Real Images",
                            file_types=["image"],
                            file_count="multiple"
                        )
                    individual_process_btn = gr.Button("Process Individual Files", interactive=False)

                with gr.Group():
                    gr.Markdown(f"### Results for {MODEL_NAME}")
                    output_acc = gr.Label(label="Accuracy")
                    output_roc = gr.Label(label="ROC Score")
                    output_report = gr.HTML(label="Classification Report")
                    output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
                    output_fp_fn = gr.HTML(label="False Positives and Negatives")

                reset_btn = gr.Button("Reset")

        load_btn.click(load_url, in_url, [inp, message])
        btn.click(
            lambda img: detector.predict(img),
            inp,
            [output_html, output_label]
        )

        def enable_zip_btn(file):
            return gr.Button.update(interactive=file is not None)

        def enable_individual_btn(ai_files, real_files):
            return gr.Button.update(interactive=(ai_files is not None and real_files is not None))

        zip_file.upload(enable_zip_btn, zip_file, zip_process_btn)
        
        ai_files.upload(enable_individual_btn, [ai_files, real_files], individual_process_btn)
        real_files.upload(enable_individual_btn, [ai_files, real_files], individual_process_btn)

        zip_process_btn.click(
            process_zip,
            zip_file,
            [output_acc, output_roc, output_report, output_plots, output_fp_fn]
        )

        individual_process_btn.click(
            process_files,
            [ai_files, real_files],
            [output_acc, output_roc, output_report, output_plots, output_fp_fn]
        )

        def reset_interface():
            return [
                None, None, None, None, None,  # Reset inputs
                gr.Button.update(interactive=False),  # Reset zip process button
                gr.Button.update(interactive=False),  # Reset individual process button
                None, None, None, None, None  # Reset outputs
            ]

        reset_btn.click(
            reset_interface,
            inputs=None,
            outputs=[
                zip_file, ai_files, real_files,
                output_acc, output_roc, output_report, output_plots, output_fp_fn,
                zip_process_btn, individual_process_btn
            ]
        )

    return app

if __name__ == "__main__":
    app = create_gradio_interface()
    app.launch(
        show_api=False,
        max_threads=24,
        show_error=True
    )