Spaces:
Sleeping
Sleeping
File size: 14,778 Bytes
6364b8e 050a6c5 e88ec7e 773268b 06b2f35 e88ec7e 12fbe49 06b2f35 773268b f88c19d 773268b 1e15008 1d7c27a 1e15008 275549c 1e15008 e88ec7e 1d7c27a 80bc071 24dd2a8 80bc071 c1f19b9 80bc071 c1f19b9 80bc071 c1f19b9 80bc071 24dd2a8 80bc071 24dd2a8 80bc071 24dd2a8 80bc071 773268b 1d7c27a 12fbe49 1d7c27a 12fbe49 1d7c27a 12fbe49 1d7c27a 12fbe49 1d7c27a 12fbe49 1d7c27a 12fbe49 1d7c27a 12fbe49 1d7c27a 275549c 06b2f35 773268b 06b2f35 a870a21 773268b dfcd1e8 773268b a38dfd7 773268b 1d7c27a 773268b 80bc071 773268b 12fbe49 773268b 2e039a9 773268b 1d7c27a 57e8402 2e039a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc, ConfusionMatrixDisplay
from PIL import Image
import tempfile
import numpy as np
import urllib.request
import base64
from io import BytesIO
MODEL_NAME = "cmckinle/sdxl-flux-detector"
LABELS = ["AI", "Real"]
class AIDetector:
def __init__(self):
self.pipe = pipeline("image-classification", MODEL_NAME)
self.feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
self.model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
@staticmethod
def softmax(vector):
e = np.exp(vector - np.max(vector))
return e / e.sum()
def predict(self, image):
inputs = self.feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = self.softmax(logits.numpy())
prediction = logits.argmax(-1).item()
label = LABELS[prediction]
results = {label: float(prob) for label, prob in zip(LABELS, probabilities[0])}
return label, results
def process_zip(zip_file):
temp_dir = tempfile.mkdtemp()
try:
# Validate zip structure
with zipfile.ZipFile(zip_file.name, 'r') as z:
file_list = z.namelist()
if not ('real/' in file_list and 'ai/' in file_list):
raise ValueError("Zip file must contain 'real' and 'ai' folders")
z.extractall(temp_dir)
return evaluate_model(temp_dir)
except Exception as e:
raise gr.Error(f"Error processing zip file: {str(e)}")
finally:
shutil.rmtree(temp_dir)
def process_files(ai_files, real_files):
temp_dir = tempfile.mkdtemp()
try:
# Process AI files
ai_folder = os.path.join(temp_dir, 'ai')
os.makedirs(ai_folder)
for file in ai_files:
shutil.copy(file.name, os.path.join(ai_folder, os.path.basename(file.name)))
# Process Real files
real_folder = os.path.join(temp_dir, 'real')
os.makedirs(real_folder)
for file in real_files:
shutil.copy(file.name, os.path.join(real_folder, os.path.basename(file.name)))
return evaluate_model(temp_dir)
except Exception as e:
raise gr.Error(f"Error processing individual files: {str(e)}")
finally:
shutil.rmtree(temp_dir)
def evaluate_model(temp_dir):
labels, preds, images = [], [], []
false_positives, false_negatives = [], []
detector = AIDetector()
total_images = sum(len(files) for _, _, files in os.walk(temp_dir))
processed_images = 0
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(temp_dir, folder_name)
if not os.path.exists(folder_path):
raise ValueError(f"Folder not found: {folder_path}")
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
with Image.open(img_path).convert("RGB") as img:
_, prediction = detector.predict(img)
pred_label = 0 if prediction["AI"] > prediction["Real"] else 1
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
# Collect false positives and false negatives with image data
if pred_label != ground_truth_label:
with open(img_path, "rb") as img_file:
img_data = base64.b64encode(img_file.read()).decode()
if pred_label == 1 and ground_truth_label == 0:
false_positives.append((img_name, img_data))
elif pred_label == 0 and ground_truth_label == 1:
false_negatives.append((img_name, img_data))
except Exception as e:
print(f"Error processing image {img_name}: {e}")
processed_images += 1
gr.Progress(processed_images / total_images)
return calculate_metrics(labels, preds, false_positives, false_negatives)
def calculate_metrics(labels, preds, false_positives, false_negatives):
cm = confusion_matrix(labels, preds)
accuracy = accuracy_score(labels, preds)
roc_score = roc_auc_score(labels, preds)
report_html = format_classification_report(labels, preds)
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LABELS).plot(cmap=plt.cm.Blues, ax=ax1)
ax1.set_title("Confusion Matrix")
ax2.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
ax2.plot([0, 1], [0, 1], color='gray', linestyle='--')
ax2.set_xlim([0.0, 1.0])
ax2.set_ylim([0.0, 1.05])
ax2.set_xlabel('False Positive Rate')
ax2.set_ylabel('True Positive Rate')
ax2.set_title('ROC Curve')
ax2.legend(loc="lower right")
plt.tight_layout()
fp_fn_html = create_fp_fn_html(false_positives, false_negatives)
return accuracy, roc_score, report_html, fig, fp_fn_html
def format_classification_report(labels, preds):
report_dict = classification_report(labels, preds, output_dict=True)
html = """
<style>
.report-table {
border-collapse: collapse;
width: 100%;
font-family: Arial, sans-serif;
}
.report-table th, .report-table td {
border: 1px solid;
padding: 8px;
text-align: center;
}
.report-table th {
font-weight: bold;
}
.report-table tr:nth-child(even) {
background-color: rgba(0, 0, 0, 0.05);
}
@media (prefers-color-scheme: dark) {
.report-table {
color: #e0e0e0;
background-color: #2d2d2d;
}
.report-table th, .report-table td {
border-color: #555;
}
.report-table th {
background-color: #3d3d3d;
}
.report-table tr:nth-child(even) {
background-color: #333;
}
.report-table tr:hover {
background-color: #3a3a3a;
}
}
@media (prefers-color-scheme: light) {
.report-table {
color: #333333;
background-color: #ffffff;
}
.report-table th, .report-table td {
border-color: #ddd;
}
.report-table th {
background-color: #f2f2f2;
}
.report-table tr:nth-child(even) {
background-color: #f9f9f9;
}
.report-table tr:hover {
background-color: #f5f5f5;
}
}
</style>
<table class="report-table">
<tr>
<th>Class</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-Score</th>
<th>Support</th>
</tr>
"""
for class_name in ['0', '1']:
html += f"""
<tr>
<td>{class_name}</td>
<td>{report_dict[class_name]['precision']:.2f}</td>
<td>{report_dict[class_name]['recall']:.2f}</td>
<td>{report_dict[class_name]['f1-score']:.2f}</td>
<td>{report_dict[class_name]['support']}</td>
</tr>
"""
html += f"""
<tr>
<td>Accuracy</td>
<td colspan="3">{report_dict['accuracy']:.2f}</td>
<td>{report_dict['macro avg']['support']}</td>
</tr>
<tr>
<td>Macro Avg</td>
<td>{report_dict['macro avg']['precision']:.2f}</td>
<td>{report_dict['macro avg']['recall']:.2f}</td>
<td>{report_dict['macro avg']['f1-score']:.2f}</td>
<td>{report_dict['macro avg']['support']}</td>
</tr>
<tr>
<td>Weighted Avg</td>
<td>{report_dict['weighted avg']['precision']:.2f}</td>
<td>{report_dict['weighted avg']['recall']:.2f}</td>
<td>{report_dict['weighted avg']['f1-score']:.2f}</td>
<td>{report_dict['weighted avg']['support']}</td>
</tr>
</table>
"""
return html
def create_fp_fn_html(false_positives, false_negatives):
html = """
<style>
.image-grid {
display: flex;
flex-wrap: wrap;
gap: 10px;
}
.image-item {
display: flex;
flex-direction: column;
align-items: center;
}
.image-item img {
max-width: 200px;
max-height: 200px;
}
</style>
"""
html += "<h3>False Positives (AI images classified as Real):</h3>"
html += '<div class="image-grid">'
for img_name, img_data in false_positives:
html += f'''
<div class="image-item">
<img src="data:image/jpeg;base64,{img_data}" alt="{img_name}">
<p>{img_name}</p>
</div>
'''
html += '</div>'
html += "<h3>False Negatives (Real images classified as AI):</h3>"
html += '<div class="image-grid">'
for img_name, img_data in false_negatives:
html += f'''
<div class="image-item">
<img src="data:image/jpeg;base64,{img_data}" alt="{img_name}">
<p>{img_name}</p>
</div>
'''
html += '</div>'
return html
def load_url(url):
try:
urllib.request.urlretrieve(url, "temp_image.png")
image = Image.open("temp_image.png")
message = "Image Loaded"
except Exception as e:
image = None
message = f"Image not Found<br>Error: {e}"
return image, message
detector = AIDetector()
def create_gradio_interface():
with gr.Blocks() as app:
gr.Markdown("""<center><h1>AI Image Detector</h1></center>""")
with gr.Tabs():
with gr.Tab("Single Image Detection"):
with gr.Column():
inp = gr.Image(type='pil')
in_url = gr.Textbox(label="Image URL")
with gr.Row():
load_btn = gr.Button("Load URL")
btn = gr.Button("Detect AI")
message = gr.HTML()
with gr.Group():
with gr.Box():
gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{MODEL_NAME}'>{MODEL_NAME}</a></b>""")
output_html = gr.HTML()
output_label = gr.Label(label="Output")
with gr.Tab("Batch Image Processing"):
with gr.Accordion("Upload Zip File (max 100MB)", open=False):
zip_file = gr.File(
label="Upload Zip (must contain 'real' and 'ai' folders)",
file_types=[".zip"],
file_count="single",
max_file_size=100 # 100 MB limit
)
zip_process_btn = gr.Button("Process Zip", interactive=False)
with gr.Accordion("Upload Individual Files (for datasets over 100MB)", open=False):
with gr.Row():
ai_files = gr.File(
label="Upload AI Images",
file_types=["image"],
file_count="multiple"
)
real_files = gr.File(
label="Upload Real Images",
file_types=["image"],
file_count="multiple"
)
individual_process_btn = gr.Button("Process Individual Files", interactive=False)
with gr.Group():
gr.Markdown(f"### Results for {MODEL_NAME}")
output_acc = gr.Label(label="Accuracy")
output_roc = gr.Label(label="ROC Score")
output_report = gr.HTML(label="Classification Report")
output_plots = gr.Plot(label="Confusion Matrix and ROC Curve")
output_fp_fn = gr.HTML(label="False Positives and Negatives")
reset_btn = gr.Button("Reset")
load_btn.click(load_url, in_url, [inp, message])
btn.click(
lambda img: detector.predict(img),
inp,
[output_html, output_label]
)
def enable_zip_btn(file):
return gr.Button.update(interactive=file is not None)
def enable_individual_btn(ai_files, real_files):
return gr.Button.update(interactive=(ai_files is not None and real_files is not None))
zip_file.upload(enable_zip_btn, zip_file, zip_process_btn)
ai_files.upload(enable_individual_btn, [ai_files, real_files], individual_process_btn)
real_files.upload(enable_individual_btn, [ai_files, real_files], individual_process_btn)
zip_process_btn.click(
process_zip,
zip_file,
[output_acc, output_roc, output_report, output_plots, output_fp_fn]
)
individual_process_btn.click(
process_files,
[ai_files, real_files],
[output_acc, output_roc, output_report, output_plots, output_fp_fn]
)
def reset_interface():
return [
None, None, None, None, None, # Reset inputs
gr.Button.update(interactive=False), # Reset zip process button
gr.Button.update(interactive=False), # Reset individual process button
None, None, None, None, None # Reset outputs
]
reset_btn.click(
reset_interface,
inputs=None,
outputs=[
zip_file, ai_files, real_files,
output_acc, output_roc, output_report, output_plots, output_fp_fn,
zip_process_btn, individual_process_btn
]
)
return app
if __name__ == "__main__":
app = create_gradio_interface()
app.launch(
show_api=False,
max_threads=24,
show_error=True
) |