Spaces:
Runtime error
Runtime error
Update app.py
#1
by
JERNGOC
- opened
app.py
CHANGED
@@ -1,54 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
import spaces
|
7 |
-
import torch
|
8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
-
|
10 |
-
MAX_MAX_NEW_TOKENS = 1024
|
11 |
-
DEFAULT_MAX_NEW_TOKENS = 256
|
12 |
-
MAX_INPUT_TOKEN_LENGTH = 512
|
13 |
-
|
14 |
-
DESCRIPTION = """\
|
15 |
-
# OpenELM-3B-Instruct
|
16 |
-
|
17 |
-
This Space demonstrates [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) by Apple. Please, check the original model card for details.
|
18 |
-
You can see the other models of the OpenELM family [here](https://huggingface.co/apple/OpenELM)
|
19 |
-
The following Colab notebooks are available:
|
20 |
-
* [OpenELM-3B-Instruct (GPU)](https://gist.github.com/Norod/4f11bb36bea5c548d18f10f9d7ec09b0)
|
21 |
-
* [OpenELM-270M (CPU)](https://gist.github.com/Norod/5a311a8e0a774b5c35919913545b7af4)
|
22 |
-
|
23 |
-
You might also be interested in checking out Apple's [CoreNet Github page](https://github.com/apple/corenet?tab=readme-ov-file).
|
24 |
-
|
25 |
-
If you duplicate this space, make sure you have access to [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
26 |
-
because this model uses it as a tokenizer.
|
27 |
-
|
28 |
-
# Note: Use this model for only for completing sentences and instruction following.
|
29 |
-
## While the user interface is a chatbot for convenience, this is an instruction tuned model not fine-tuned for chatbot tasks. As such, the model is not provided a chat history and will complete your text based on the last given prompt only.
|
30 |
-
"""
|
31 |
-
|
32 |
-
LICENSE = """
|
33 |
-
<p/>
|
34 |
-
|
35 |
-
---
|
36 |
-
As a derivative work of [OpenELM-3B-Instruct](https://huggingface.co/apple/OpenELM-3B-Instruct) by Apple,
|
37 |
-
this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-3B-Instruct/blob/main/LICENSE).
|
38 |
-
"""
|
39 |
-
|
40 |
-
if not torch.cuda.is_available():
|
41 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
42 |
-
|
43 |
-
|
44 |
-
if torch.cuda.is_available():
|
45 |
-
model_id = "apple/OpenELM-3B-Instruct"
|
46 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, low_cpu_mem_usage=True)
|
47 |
-
tokenizer_id = "meta-llama/Llama-2-7b-hf"
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
49 |
-
if tokenizer.pad_token == None:
|
50 |
-
tokenizer.pad_token = tokenizer.eos_token
|
51 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id
|
52 |
|
53 |
@spaces.GPU
|
54 |
def generate(
|
@@ -60,91 +14,9 @@ def generate(
|
|
60 |
top_k: int = 50,
|
61 |
repetition_penalty: float = 1.4,
|
62 |
) -> Iterator[str]:
|
|
|
63 |
|
64 |
input_ids = tokenizer([message], return_tensors="pt").input_ids
|
65 |
-
|
66 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
67 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
68 |
-
input_ids = input_ids.to(model.device)
|
69 |
-
|
70 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
71 |
-
generate_kwargs = dict(
|
72 |
-
{"input_ids": input_ids},
|
73 |
-
streamer=streamer,
|
74 |
-
max_new_tokens=max_new_tokens,
|
75 |
-
do_sample=True,
|
76 |
-
top_p=top_p,
|
77 |
-
top_k=top_k,
|
78 |
-
temperature=temperature,
|
79 |
-
num_beams=1,
|
80 |
-
pad_token_id = tokenizer.eos_token_id,
|
81 |
-
repetition_penalty=repetition_penalty,
|
82 |
-
no_repeat_ngram_size=5,
|
83 |
-
early_stopping=True,
|
84 |
-
)
|
85 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
86 |
-
t.start()
|
87 |
-
|
88 |
-
outputs = []
|
89 |
-
for text in streamer:
|
90 |
-
outputs.append(text)
|
91 |
-
yield "".join(outputs)
|
92 |
-
|
93 |
-
|
94 |
-
chat_interface = gr.ChatInterface(
|
95 |
-
fn=generate,
|
96 |
-
additional_inputs=[
|
97 |
-
gr.Slider(
|
98 |
-
label="Max new tokens",
|
99 |
-
minimum=1,
|
100 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
101 |
-
step=1,
|
102 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
103 |
-
),
|
104 |
-
gr.Slider(
|
105 |
-
label="Temperature",
|
106 |
-
minimum=0.1,
|
107 |
-
maximum=4.0,
|
108 |
-
step=0.1,
|
109 |
-
value=0.6,
|
110 |
-
),
|
111 |
-
gr.Slider(
|
112 |
-
label="Top-p (nucleus sampling)",
|
113 |
-
minimum=0.05,
|
114 |
-
maximum=1.0,
|
115 |
-
step=0.05,
|
116 |
-
value=0.9,
|
117 |
-
),
|
118 |
-
gr.Slider(
|
119 |
-
label="Top-k",
|
120 |
-
minimum=1,
|
121 |
-
maximum=1000,
|
122 |
-
step=1,
|
123 |
-
value=50,
|
124 |
-
),
|
125 |
-
gr.Slider(
|
126 |
-
label="Repetition penalty",
|
127 |
-
minimum=1.0,
|
128 |
-
maximum=2.0,
|
129 |
-
step=0.05,
|
130 |
-
value=1.4,
|
131 |
-
),
|
132 |
-
],
|
133 |
-
stop_btn=None,
|
134 |
-
examples=[
|
135 |
-
["A recipe for a chocolate cake:"],
|
136 |
-
["Can you explain briefly to me what is the Python programming language?"],
|
137 |
-
["Explain the plot of Cinderella in a sentence."],
|
138 |
-
["Question: What is the capital of France?\nAnswer:"],
|
139 |
-
["Question: I am very tired, what should I do?\nAnswer:"],
|
140 |
-
],
|
141 |
-
)
|
142 |
-
|
143 |
-
with gr.Blocks(css="style.css") as demo:
|
144 |
-
gr.Markdown(DESCRIPTION)
|
145 |
-
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
146 |
-
chat_interface.render()
|
147 |
-
gr.Markdown(LICENSE)
|
148 |
|
149 |
-
|
150 |
-
demo.queue(max_size=20).launch()
|
|
|
1 |
+
# At the top level of your script, after initializing the tokenizer
|
2 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
3 |
+
if tokenizer.pad_token == None:
|
4 |
+
tokenizer.pad_token = tokenizer.eos_token
|
5 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
@spaces.GPU
|
8 |
def generate(
|
|
|
14 |
top_k: int = 50,
|
15 |
repetition_penalty: float = 1.4,
|
16 |
) -> Iterator[str]:
|
17 |
+
global tokenizer, model # Add this line to access global variables
|
18 |
|
19 |
input_ids = tokenizer([message], return_tensors="pt").input_ids
|
20 |
+
# ... rest of the function ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# The rest of your code remains the same
|
|