Spaces:
Sleeping
Sleeping
import numpy as np | |
from scipy import signal | |
import math | |
import matplotlib.pyplot as plt | |
from huggingface_hub import from_pretrained_keras | |
import streamlit as st | |
# Needed in requirements.txt for importing to use in the transformers model | |
import tensorflow | |
# HELLO HUGGING FACE | |
######################################################################################################################## | |
# Define the piecewise functions to create each of the possible shapes | |
def basic_box_array(image_size): | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
# Creates the outside edges of the box | |
for i in range(image_size): | |
for j in range(image_size): | |
if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1: | |
A[i][j] = 1 | |
return A | |
def back_slash_array(image_size): | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for i in range(image_size): | |
for j in range(image_size): | |
if i == j: | |
A[i][j] = 1 | |
return A | |
def forward_slash_array(image_size): | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for i in range(image_size): | |
for j in range(image_size): | |
if i == (image_size - 1) - j: | |
A[i][j] = 1 | |
return A | |
def hot_dog_array(image_size): | |
# Places pixels down the vertical axis to split the box | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for i in range(image_size): | |
for j in range(image_size): | |
if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2): | |
A[i][j] = 1 | |
return A | |
def hamburger_array(image_size): | |
# Places pixels across the horizontal axis to split the box | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for i in range(image_size): | |
for j in range(image_size): | |
if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2): | |
A[i][j] = 1 | |
return A | |
def center_array(image_size): | |
A = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for i in range(image_size): | |
for j in range(image_size): | |
if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2): | |
A[i][j] = 1 | |
if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2): | |
A[i][j] = 1 | |
if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2): | |
A[i][j] = 1 | |
if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2): | |
A[i][j] = 1 | |
return A | |
def update_array(array_original, array_new, image_size): | |
A = array_original | |
for i in range(image_size): | |
for j in range(image_size): | |
if array_new[i][j] == 1: | |
A[i][j] = 1 | |
return A | |
def add_pixels(array_original, additional_pixels, image_size): | |
# Adds pixels to the thickness of each component of the box | |
A = array_original | |
A_updated = np.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values | |
for dens in range(additional_pixels): | |
for i in range(1, image_size - 1): | |
for j in range(1, image_size - 1): | |
if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0: | |
A_updated[i][j] = 1 | |
A = update_array(A, A_updated, image_size) | |
return A | |
######################################################################################################################## | |
# Create the desired shape using the density and thickness | |
def basic_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Creates the outside edges of the box | |
# Increase the thickness of each part of the box | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def horizontal_vertical_box_split(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Creates the outside edges of the box | |
# Place pixels across the horizontal and vertical axes to split the box | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
A = update_array(A, hamburger_array(image_size), image_size) | |
# Increase the thickness of each part of the box | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def diagonal_box_split(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Creates the outside edges of the box | |
# Add pixels along the diagonals of the box | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
# Adds pixels to the thickness of each component of the box | |
# Increase the thickness of each part of the box | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def back_slash_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def forward_slash_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def hot_dog_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def hamburger_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hamburger_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def x_plus_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
A = update_array(A, hamburger_array(image_size), image_size) | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def forward_slash_plus_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
A = update_array(A, hamburger_array(image_size), image_size) | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
# A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def back_slash_plus_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
A = update_array(A, hamburger_array(image_size), image_size) | |
# A = update_array(A, forward_slash_array(image_size), image_size) | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def x_hot_dog_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, hot_dog_array(image_size), image_size) | |
# A = update_array(A, hamburger_array(image_size), image_size) | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def x_hamburger_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
# A = update_array(A, hot_dog_array(image_size), image_size) | |
A = update_array(A, hamburger_array(image_size), image_size) | |
A = update_array(A, forward_slash_array(image_size), image_size) | |
A = update_array(A, back_slash_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
def center_box(additional_pixels, density, image_size): | |
A = basic_box_array(image_size) # Initializes A matrix with 0 values | |
A = update_array(A, center_array(image_size), image_size) | |
A = add_pixels(A, additional_pixels, image_size) | |
return A * density | |
######################################################################################################################## | |
# The function to add thickness to struts in an array | |
def add_thickness(array_original, thickness: int) -> np.ndarray: | |
""" | |
:param array_original: [ndarray] - an array with thickness 1 of any shape type | |
:param thickness: [int] - the number of pixels to be activated surrounding the base shape | |
:return: [ndarray] - the output is a unit cell that has been convolved to expand the number of pixels activated | |
based on the desired thickness. The activated pixels are 1 (white) and the deactivated pixels are 0 (black) | |
""" | |
A = array_original | |
if thickness == 0: # want an array of all 0's for thickness = 0 | |
A[A > 0] = 0 | |
else: | |
filter_size = 2*thickness - 1 # the size of the filter needs to extend far enough to reach the base shape | |
filter = np.zeros((filter_size, filter_size)) | |
filter[np.floor((filter_size - 1) / 2).astype(int), :] = filter[:, np.floor((filter_size - 1) / 2).astype(int)] =1 | |
filter[np.ceil((filter_size - 1) / 2).astype(int), :] = filter[:, np.ceil((filter_size - 1) / 2).astype(int)] = 1 | |
# The filter is made into a '+' shape using these functions | |
convolution = signal.convolve2d(A, filter, mode='same') | |
A = np.where(convolution <= 1, convolution, 1) | |
return A | |
# The function to efficiently combine arrays in a list | |
def combine_arrays(arrays): | |
output_array = np.sum(arrays, axis=0) # Add the list of arrays | |
output_array = np.array(output_array > 0, dtype=int) # Convert all values in array to 1 | |
return output_array | |
######################################################################################################################## | |
# Provide the Options for users to select from | |
shape_options = ("basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box", | |
"back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box", | |
"x_hot_dog_box", "x_plus_box") | |
density_options = ["{:.2f}".format(x) for x in np.linspace(0.1, 1, 10)] | |
thickness_options = [str(int(x)) for x in np.linspace(0, 10, 11)] | |
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]] | |
# Provide User Options | |
# Select Shapes | |
shape_1 = st.selectbox("Shape 1", shape_options) | |
shape_2 = st.selectbox("Shape 2", shape_options) | |
# Select Density | |
density_1 = st.selectbox("Density 1:", density_options) | |
density_2 = st.selectbox("Density 2:", density_options) | |
# Select Thickness | |
thickness_1 = st.selectbox("Thickness 1", thickness_options) | |
thickness_2 = st.selectbox("Thickness 2", thickness_options) | |
# Select Interpolation Length | |
interp_length = st.selectbox("Interpolation Length", interpolation_options) | |
# Define the function to generate unit cells based on user inputs | |
def generate_unit_cell(shape, density, thickness): | |
return globals()[shape](int(thickness), float(density), 28) | |
# Generate the endpoints | |
number_1 = generate_unit_cell(shape_1, density_1, thickness_1) | |
number_2 = generate_unit_cell(shape_2, density_2, thickness_2) | |
# Display the endpoints to the user | |
if st.button("Generate Endpoint Images"): | |
plt.figure(1) | |
st.header("Endpoints to be generated:") | |
plt.subplot(1, 2, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1) | |
plt.subplot(1, 2, 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1) | |
plt.figure(1) | |
st.pyplot(plt.figure(1)) | |
######################################################################################################################## | |
# Load the models from existing huggingface model | |
# Load the encoder model | |
encoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-encoder") | |
# Load the decoder model | |
decoder_model_boxes = from_pretrained_keras("cmudrc/2d-lattice-decoder") | |
######################################################################################################################## | |
# Encode the Desired Endpoints | |
# resize the array to match the prediction size requirement | |
number_1_expand = np.expand_dims(np.expand_dims(number_1, axis=2), axis=0) | |
number_2_expand = np.expand_dims(np.expand_dims(number_2, axis=2), axis=0) | |
# Determine the latent point that will represent our desired number | |
latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0] | |
latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0] | |
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space | |
######################################################################################################################## | |
# Establish the Framework for a LINEAR Interpolation | |
number_internal = 8 # the number of interpolations that the model will find between two points | |
num_interp = number_internal + 2 # the number of images to be pictured | |
latent_matrix = [] # This will contain the latent points of the interpolation | |
for column in range(latent_dimensionality): | |
new_column = np.linspace(latent_point_1[column], latent_point_2[column], num_interp) | |
latent_matrix.append(new_column) | |
latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed | |
######################################################################################################################## | |
# Plotting the Interpolation in 2D Using Chosen Points | |
if st.button("Generate Interpolation:"): | |
plt.figure(2) | |
plot_rows = 2 | |
plot_columns = num_interp + 2 | |
# Plot the First Interpolation Point | |
plt.subplot(plot_rows, plot_columns, 1), plt.imshow(number_1, cmap='gray', vmin=0, vmax=1) | |
# plt.title("First Interpolation Point:\n" + str(box_shape_test[number_1]) + "\nPixel Density: " + str( | |
# box_density_test[number_1]) + "\nAdditional Pixels: " + str(additional_pixels_test[number_1])) | |
predicted_interps = [] # Used to store the predicted interpolations | |
# Interpolate the Images and Print out to User | |
for latent_point in range(2, num_interp + 2): # cycles the latent points through the decoder model to create images | |
generated_image = decoder_model_boxes.predict(np.array([latent_matrix[latent_point - 2]]))[0] # generates an interpolated image based on the latent point | |
predicted_interps.append(generated_image[:, :, -1]) | |
plt.subplot(plot_rows, plot_columns, latent_point), plt.imshow(generated_image[:, :, -1], cmap='gray', vmin=0, vmax=1) | |
# plt.axis('off') | |
# Plot the Second Interpolation Point | |
plt.subplot(plot_rows, plot_columns, num_interp + 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1) | |
# plt.title("Second Interpolation Point:\n" + str(box_shape_test[number_2]) + "\nPixel Density: " + str( | |
# box_density_test[number_2]) + "\nAdditional Pixels: " + str(additional_pixels_test[number_2])) # + "\nPredicted Latent Point 2: " + str(latent_point_2) | |
plt.figure(2) | |
st.pyplot(plt.figure(2)) | |