Spaces:
Sleeping
Sleeping
marta-marta
commited on
Commit
·
878d5d1
1
Parent(s):
8ce1c5e
Modifying the figures to be published
Browse files
app.py
CHANGED
@@ -320,6 +320,7 @@ latent_matrix = np.array(latent_matrix).T # Transposes the matrix so that each
|
|
320 |
# Plotting the Interpolation in 2D Using Chosen Points
|
321 |
if st.button("Generate Interpolation:"):
|
322 |
plt.figure(2)
|
|
|
323 |
plot_rows = 2
|
324 |
plot_columns = num_interp + 2
|
325 |
|
@@ -340,5 +341,46 @@ if st.button("Generate Interpolation:"):
|
|
340 |
plt.subplot(plot_rows, plot_columns, num_interp + 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1)
|
341 |
# plt.title("Second Interpolation Point:\n" + str(box_shape_test[number_2]) + "\nPixel Density: " + str(
|
342 |
# box_density_test[number_2]) + "\nAdditional Pixels: " + str(additional_pixels_test[number_2])) # + "\nPredicted Latent Point 2: " + str(latent_point_2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
plt.figure(2)
|
344 |
st.pyplot(plt.figure(2))
|
|
|
320 |
# Plotting the Interpolation in 2D Using Chosen Points
|
321 |
if st.button("Generate Interpolation:"):
|
322 |
plt.figure(2)
|
323 |
+
"""
|
324 |
plot_rows = 2
|
325 |
plot_columns = num_interp + 2
|
326 |
|
|
|
341 |
plt.subplot(plot_rows, plot_columns, num_interp + 2), plt.imshow(number_2, cmap='gray', vmin=0, vmax=1)
|
342 |
# plt.title("Second Interpolation Point:\n" + str(box_shape_test[number_2]) + "\nPixel Density: " + str(
|
343 |
# box_density_test[number_2]) + "\nAdditional Pixels: " + str(additional_pixels_test[number_2])) # + "\nPredicted Latent Point 2: " + str(latent_point_2)
|
344 |
+
"""
|
345 |
+
linear_interp_latent = np.linspace(latent_point_1, latent_point_2, interp_length)
|
346 |
+
print(len(linear_interp_latent))
|
347 |
+
|
348 |
+
linear_predicted_interps = []
|
349 |
+
figure = np.zeros((28 * num_interp, 28))
|
350 |
+
for i in range(num_interp):
|
351 |
+
generated_image = decoder_model_boxes.predict(np.array([linear_interp_latent[i]]))[0]
|
352 |
+
figure[i * 28:(i + 1) * 28, 0:28, ] = generated_image[:, :, -1]
|
353 |
+
linear_predicted_interps.append(generated_image[:, :, -1])
|
354 |
+
|
355 |
+
plt.figure(figsize=(15, 15))
|
356 |
+
plt.imshow(figure, cmap='gray')
|
357 |
+
|
358 |
+
'''
|
359 |
+
latent_matrix_2 = [] # This will contain the latent points of the interpolation
|
360 |
+
for column in range(latent_dimensionality):
|
361 |
+
new_column = np.linspace(latent_point_3[column], latent_point_4[column], num_interp)
|
362 |
+
latent_matrix_2.append(new_column)
|
363 |
+
latent_matrix_2 = np.array(latent_matrix_2).T # Transposes the matrix so that each row can be easily indexed
|
364 |
+
|
365 |
+
mesh = [] # This will create a mesh by interpolating between the two interpolations
|
366 |
+
for column in range(num_interp):
|
367 |
+
row = np.linspace(latent_matrix[column], latent_matrix_2[column], num_interp)
|
368 |
+
mesh.append(row)
|
369 |
+
|
370 |
+
mesh = np.transpose(mesh, axes=(1, 0, 2)) # Transpose the array so it matches the original interpolation
|
371 |
+
generator_model = decoder_model_boxes
|
372 |
+
|
373 |
+
figure = np.zeros((28 * num_interp, 28 * num_interp))
|
374 |
+
|
375 |
+
mesh_predicted_interps = []
|
376 |
+
for i in range(num_interp):
|
377 |
+
for j in range(num_interp):
|
378 |
+
generated_image = generator_model.predict(np.array([mesh[i][j]]))[0]
|
379 |
+
figure[i * 28:(i + 1) * 28, j * 28:(j + 1) * 28, ] = generated_image[:, :, -1]
|
380 |
+
mesh_predicted_interps.append(generated_image[:, :, -1])
|
381 |
+
|
382 |
+
plt.figure(figsize=(15, 15))
|
383 |
+
plt.imshow(figure, cmap='gray')
|
384 |
+
'''
|
385 |
plt.figure(2)
|
386 |
st.pyplot(plt.figure(2))
|