Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import time | |
import random | |
from pathlib import Path | |
import re | |
import glob | |
import accelerate | |
import json | |
import numpy as np | |
import torch | |
from accelerate.utils import ProjectConfiguration | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
from accelerate.logging import get_logger | |
from models.codec.facodec.facodec_dataset import FAcodecDataset, FAcodecCollator | |
from models.codec.codec_sampler import build_samplers | |
from models.codec.codec_trainer import CodecTrainer | |
from modules.dac.nn.loss import ( | |
MultiScaleSTFTLoss, | |
MelSpectrogramLoss, | |
GANLoss, | |
L1Loss, | |
FocalLoss, | |
) | |
from audiotools import AudioSignal | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
try: | |
import nemo.collections.asr as nemo_asr | |
except ImportError: | |
print( | |
"Unable to import nemo_asr, titanet outputs will be set to random values, you may only run debugging mode. DO NOT USE THIS FOR TRAINING" | |
) | |
nemo_asr = None | |
from models.codec.facodec.modules.commons import ( | |
build_model, | |
load_checkpoint, | |
load_F0_models, | |
log_norm, | |
) | |
from models.codec.facodec.optimizer import build_optimizer | |
class FAcodecTrainer(CodecTrainer): | |
def __init__(self, args, cfg): | |
super().__init__() | |
self.args = args | |
self.cfg = cfg | |
cfg.exp_name = args.exp_name | |
# Init accelerator | |
self._init_accelerator() | |
self.accelerator.wait_for_everyone() | |
# Init logger | |
with self.accelerator.main_process_first(): | |
self.logger = get_logger(args.exp_name, log_level=args.log_level) | |
self.logger.info("=" * 56) | |
self.logger.info("||\t\t" + "New training process started." + "\t\t||") | |
self.logger.info("=" * 56) | |
self.logger.info("\n") | |
self.logger.debug(f"Using {args.log_level.upper()} logging level.") | |
self.logger.info(f"Experiment name: {args.exp_name}") | |
self.logger.info(f"Experiment directory: {self.exp_dir}") | |
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") | |
if self.accelerator.is_main_process: | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") | |
# Init training status | |
self.batch_count: int = 0 | |
self.step: int = 0 | |
self.epoch: int = 0 | |
self.max_epoch = ( | |
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf") | |
) | |
self.logger.info( | |
"Max epoch: {}".format( | |
self.max_epoch if self.max_epoch < float("inf") else "Unlimited" | |
) | |
) | |
# Check potential erorrs | |
if self.accelerator.is_main_process: | |
self._check_basic_configs() | |
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride | |
self.checkpoints_path = [ | |
[] for _ in range(len(self.save_checkpoint_stride)) | |
] | |
self.run_eval = self.cfg.train.run_eval | |
# Set random seed | |
with self.accelerator.main_process_first(): | |
start = time.monotonic_ns() | |
self._set_random_seed(self.cfg.train.random_seed) | |
end = time.monotonic_ns() | |
self.logger.debug( | |
f"Setting random seed done in {(end - start) / 1e6:.2f}ms" | |
) | |
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}") | |
# Build dataloader | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building dataset...") | |
start = time.monotonic_ns() | |
self.train_dataloader, self.valid_dataloader = self._build_dataloader() | |
end = time.monotonic_ns() | |
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms") | |
# Build model | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building model...") | |
start = time.monotonic_ns() | |
self.model = self._build_model() | |
end = time.monotonic_ns() | |
for _, model in self.model.items(): | |
self.logger.debug(model) | |
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms") | |
self.logger.info(f"Model parameters: {self._count_parameters()/1e6:.2f}M") | |
# Build optimizers and schedulers | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building optimizer and scheduler...") | |
start = time.monotonic_ns() | |
self.optimizer = self._build_optimizer() | |
end = time.monotonic_ns() | |
self.logger.info( | |
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms" | |
) | |
# Build helper models | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building helper models...") | |
start = time.monotonic_ns() | |
self._built_helper_model() | |
end = time.monotonic_ns() | |
self.logger.info( | |
f"Building helper models done in {(end - start) / 1e6:.2f}ms" | |
) | |
# Accelerator preparing | |
self.logger.info("Initializing accelerate...") | |
start = time.monotonic_ns() | |
for k in self.model: | |
self.model[k] = self.accelerator.prepare(self.model[k]) | |
for k, v in self.optimizer.optimizers.items(): | |
self.optimizer.optimizers[k] = self.accelerator.prepare( | |
self.optimizer.optimizers[k] | |
) | |
self.optimizer.schedulers[k] = self.accelerator.prepare( | |
self.optimizer.schedulers[k] | |
) | |
end = time.monotonic_ns() | |
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms") | |
# Build criterions | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building criterion...") | |
start = time.monotonic_ns() | |
self.criterions = self._build_criterion() | |
end = time.monotonic_ns() | |
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms") | |
# Resume checkpoints | |
with self.accelerator.main_process_first(): | |
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") | |
if args.resume_type: | |
self.logger.info("Resuming from checkpoint...") | |
start = time.monotonic_ns() | |
ckpt_path = Path(args.checkpoint) | |
if self._is_valid_pattern(ckpt_path.parts[-1]): | |
ckpt_path = self._load_model(args.checkpoint, args.resume_type) | |
else: | |
ckpt_path = self._load_model( | |
args.checkpoint, resume_type=args.resume_type | |
) | |
end = time.monotonic_ns() | |
self.logger.info( | |
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms" | |
) | |
self.checkpoints_path = json.load( | |
open(os.path.join(ckpt_path, "ckpts.json"), "r") | |
) | |
if self.accelerator.is_main_process: | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") | |
# Save config | |
self.config_save_path = os.path.join(self.exp_dir, "args.json") | |
def _build_dataset(self): | |
return FAcodecDataset, FAcodecCollator | |
def _build_criterion(self): | |
criterions = dict() | |
stft_criterion = MultiScaleSTFTLoss() | |
mel_criterion = MelSpectrogramLoss( | |
n_mels=[5, 10, 20, 40, 80, 160, 320], | |
window_lengths=[32, 64, 128, 256, 512, 1024, 2048], | |
mel_fmin=[0, 0, 0, 0, 0, 0, 0], | |
mel_fmax=[None, None, None, None, None, None, None], | |
pow=1.0, | |
mag_weight=0.0, | |
clamp_eps=1e-5, | |
) | |
content_criterion = FocalLoss(gamma=2) | |
l1_criterion = L1Loss() | |
criterions["stft"] = stft_criterion | |
criterions["mel"] = mel_criterion | |
criterions["l1"] = l1_criterion | |
criterions["content"] = content_criterion | |
return criterions | |
def _build_model(self): | |
model = build_model(self.cfg.model_params) | |
_ = [model[key].to(self.accelerator.device) for key in model] | |
return model | |
def _built_helper_model(self): | |
device = self.accelerator.device | |
self.pitch_extractor = load_F0_models(self.cfg.F0_path).to(device) | |
# load model and processor | |
self.w2v_processor = Wav2Vec2Processor.from_pretrained( | |
"facebook/wav2vec2-xlsr-53-espeak-cv-ft" | |
) | |
self.w2v_model = Wav2Vec2ForCTC.from_pretrained( | |
"facebook/wav2vec2-xlsr-53-espeak-cv-ft" | |
).to(device) | |
self.w2v_model.eval() | |
if nemo_asr is None: | |
self.speaker_model = None | |
else: | |
self.speaker_model = ( | |
nemo_asr.models.EncDecSpeakerLabelModel.from_pretrained( | |
"nvidia/speakerverification_en_titanet_large" | |
) | |
) | |
self.speaker_model = self.speaker_model.to(device) | |
self.speaker_model.eval() | |
def _build_optimizer(self): | |
scheduler_params = { | |
"warmup_steps": self.cfg.loss_params.warmup_steps, | |
"base_lr": self.cfg.loss_params.base_lr, | |
} | |
optimizer = build_optimizer( | |
{key: self.model[key] for key in self.model}, | |
scheduler_params_dict={key: scheduler_params.copy() for key in self.model}, | |
lr=float(scheduler_params["base_lr"]), | |
) | |
return optimizer | |
def train_loop(self): | |
"""Training process""" | |
self.accelerator.wait_for_everyone() | |
# Dump config | |
if self.accelerator.is_main_process: | |
self._dump_cfg(self.config_save_path) | |
_ = [self.model[key].train() for key in self.model] | |
self.optimizer.zero_grad() | |
# Sync and start training | |
self.accelerator.wait_for_everyone() | |
while self.epoch < self.max_epoch: | |
self.logger.info("\n") | |
self.logger.info("-" * 32) | |
self.logger.info("Epoch {}: ".format(self.epoch)) | |
# Train and Validate | |
train_total_loss, train_losses = self._train_epoch() | |
for key, loss in train_losses.items(): | |
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss)) | |
self.accelerator.log( | |
{"Epoch/Train {} Loss".format(key): loss}, | |
step=self.epoch, | |
) | |
self.accelerator.log( | |
{ | |
"Epoch/Train Total Loss": train_total_loss, | |
}, | |
step=self.epoch, | |
) | |
# Update scheduler | |
self.accelerator.wait_for_everyone() | |
# Check save checkpoint interval | |
run_eval = False | |
if self.accelerator.is_main_process: | |
save_checkpoint = False | |
for i, num in enumerate(self.save_checkpoint_stride): | |
if self.epoch % num == 0: | |
save_checkpoint = True | |
run_eval |= self.run_eval[i] | |
# Save checkpoints | |
self.accelerator.wait_for_everyone() | |
if self.accelerator.is_main_process and save_checkpoint: | |
print("Saving..") | |
state = { | |
"net": {key: self.model[key].state_dict() for key in self.model}, | |
"optimizer": self.optimizer.state_dict(), | |
"scheduler": self.optimizer.scheduler_state_dict(), | |
"iters": self.step, | |
"epoch": self.epoch, | |
} | |
save_path = os.path.join( | |
self.checkpoint_dir, | |
"FAcodec_epoch_%05d_step_%05d.pth" % (self.epoch, self.iters), | |
) | |
torch.save(state, save_path) | |
json.dump( | |
self.checkpoints_path, | |
open(os.path.join(self.checkpoint_dir, "ckpts.json"), "w"), | |
ensure_ascii=False, | |
indent=4, | |
) | |
self.accelerator.wait_for_everyone() | |
self.epoch += 1 | |
# Finish training | |
self.accelerator.wait_for_everyone() | |
if self.accelerator.is_main_process: | |
path = os.path.join( | |
self.checkpoint_dir, | |
"epoch-{:04d}_step-{:07d}".format( | |
self.epoch, | |
self.step, | |
), | |
) | |
print("Saving..") | |
state = { | |
"net": {key: self.model[key].state_dict() for key in self.model}, | |
"optimizer": self.optimizer.state_dict(), | |
"scheduler": self.optimizer.scheduler_state_dict(), | |
"iters": self.step, | |
"epoch": self.epoch, | |
} | |
save_path = os.path.join( | |
self.checkpoint_dir, | |
"FAcodec_epoch_%05d_step_%05d.pth" % (self.epoch, self.iters), | |
) | |
torch.save(state, save_path) | |
def _train_epoch(self): | |
"""Training epoch. Should return average loss of a batch (sample) over | |
one epoch. See ``train_loop`` for usage. | |
""" | |
_ = [self.model[key].train() for key in self.model] | |
epoch_losses: dict = {} | |
epoch_total_loss: int = 0 | |
for batch in tqdm( | |
self.train_dataloader, | |
desc=f"Training Epoch {self.epoch}", | |
unit="batch", | |
colour="GREEN", | |
leave=False, | |
dynamic_ncols=True, | |
smoothing=0.04, | |
disable=not self.accelerator.is_main_process, | |
): | |
# Get losses | |
total_loss, losses = self._train_step(batch) | |
self.batch_count += 1 | |
# Log info | |
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0: | |
self.accelerator.log( | |
{ | |
"Step/Learning Rate": ( | |
self.optimizer.schedulers["encoder"].get_last_lr()[0] | |
if self.step != 0 | |
else 0 | |
) | |
}, | |
step=self.step, | |
) | |
for key, _ in losses.items(): | |
self.accelerator.log( | |
{ | |
"Step/Train {} Loss".format(key): losses[key], | |
}, | |
step=self.step, | |
) | |
if not epoch_losses: | |
epoch_losses = losses | |
else: | |
for key, value in losses.items(): | |
epoch_losses[key] += value | |
epoch_total_loss += total_loss | |
self.step += 1 | |
# Get and log total losses | |
self.accelerator.wait_for_everyone() | |
epoch_total_loss = ( | |
epoch_total_loss | |
/ len(self.train_dataloader) | |
* self.cfg.train.gradient_accumulation_step | |
) | |
for key in epoch_losses.keys(): | |
epoch_losses[key] = ( | |
epoch_losses[key] | |
/ len(self.train_dataloader) | |
* self.cfg.train.gradient_accumulation_step | |
) | |
return epoch_total_loss, epoch_losses | |
def _train_step(self, data): | |
"""Training forward step. Should return average loss of a sample over | |
one batch. Provoke ``_forward_step`` is recommended except for special case. | |
See ``_train_epoch`` for usage. | |
""" | |
# Init losses | |
train_losses = {} | |
total_loss = 0 | |
# Use input feature to get predictions | |
data = [b.to(self.accelerator.device, non_blocking=True) for b in data] | |
waves, mels, wave_lengths, mel_input_length = data | |
# extract semantic latent with w2v model | |
waves_16k = torchaudio.functional.resample(waves, 24000, 16000) | |
w2v_input = self.w2v_processor( | |
waves_16k, sampling_rate=16000, return_tensors="pt" | |
).input_values.to(self.accelerator.device) | |
with torch.no_grad(): | |
w2v_outputs = self.w2v_model(w2v_input.squeeze(0)).logits | |
predicted_ids = torch.argmax(w2v_outputs, dim=-1) | |
phone_ids = ( | |
F.interpolate( | |
predicted_ids.unsqueeze(0).float(), mels.size(-1), mode="nearest" | |
) | |
.long() | |
.squeeze(0) | |
) | |
# get clips | |
mel_seg_len = min( | |
[int(mel_input_length.min().item()), self.cfg.train.max_frame_len] | |
) | |
gt_mel_seg = [] | |
wav_seg = [] | |
w2v_seg = [] | |
for bib in range(len(mel_input_length)): | |
mel_length = int(mel_input_length[bib].item()) | |
random_start = ( | |
np.random.randint(0, mel_length - mel_seg_len) | |
if mel_length != mel_seg_len | |
else 0 | |
) | |
gt_mel_seg.append(mels[bib, :, random_start : random_start + mel_seg_len]) | |
# w2v_seg.append(w2v_latent[bib, :, random_start:random_start + mel_seg_len]) | |
w2v_seg.append(phone_ids[bib, random_start : random_start + mel_seg_len]) | |
y = waves[bib][random_start * 300 : (random_start + mel_seg_len) * 300] | |
wav_seg.append(y.to(self.accelerator.device)) | |
gt_mel_seg = torch.stack(gt_mel_seg).detach() | |
wav_seg = torch.stack(wav_seg).float().detach().unsqueeze(1) | |
w2v_seg = torch.stack(w2v_seg).float().detach() | |
with torch.no_grad(): | |
real_norm = log_norm(gt_mel_seg.unsqueeze(1)).squeeze(1).detach() | |
F0_real, _, _ = self.pitch_extractor(gt_mel_seg.unsqueeze(1)) | |
# normalize f0 | |
# Remove unvoiced frames (replace with -1) | |
gt_glob_f0s = [] | |
f0_targets = [] | |
for bib in range(len(F0_real)): | |
voiced_indices = F0_real[bib] > 5.0 | |
f0_voiced = F0_real[bib][voiced_indices] | |
if len(f0_voiced) != 0: | |
# Convert to log scale | |
log_f0 = f0_voiced.log2() | |
# Calculate mean and standard deviation | |
mean_f0 = log_f0.mean() | |
std_f0 = log_f0.std() | |
# Normalize the F0 sequence | |
normalized_f0 = (log_f0 - mean_f0) / std_f0 | |
# Create the normalized F0 sequence with unvoiced frames | |
normalized_sequence = torch.zeros_like(F0_real[bib]) | |
normalized_sequence[voiced_indices] = normalized_f0 | |
normalized_sequence[~voiced_indices] = ( | |
-10 | |
) # Assign -10 to unvoiced frames | |
gt_glob_f0s.append(mean_f0) | |
else: | |
normalized_sequence = torch.zeros_like(F0_real[bib]) - 10.0 | |
gt_glob_f0s.append(torch.tensor(0.0).to(self.accelerator.device)) | |
# f0_targets.append(normalized_sequence[single_side_context // 200:-single_side_context // 200]) | |
f0_targets.append(normalized_sequence) | |
f0_targets = torch.stack(f0_targets).to(self.accelerator.device) | |
# fill nan with -10 | |
f0_targets[torch.isnan(f0_targets)] = -10.0 | |
# fill inf with -10 | |
f0_targets[torch.isinf(f0_targets)] = -10.0 | |
# if frame_rate not equal to 80, interpolate f0 from frame rate of 80 to target frame rate | |
if self.cfg.preprocess_params.frame_rate != 80: | |
f0_targets = F.interpolate( | |
f0_targets.unsqueeze(1), | |
mel_seg_len // 80 * self.cfg.preprocess_params.frame_rate, | |
mode="nearest", | |
).squeeze(1) | |
w2v_seg = F.interpolate( | |
w2v_seg, | |
mel_seg_len // 80 * self.cfg.preprocess_params.frame_rate, | |
mode="nearest", | |
) | |
wav_seg_input = wav_seg | |
wav_seg_target = wav_seg | |
z = self.model.encoder(wav_seg_input) | |
z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer( | |
z, wav_seg_input, n_c=2, full_waves=waves, wave_lens=wave_lengths | |
) | |
preds, rev_preds = self.model.fa_predictors(quantized, timbre) | |
pred_wave = self.model.decoder(z) | |
len_diff = wav_seg_target.size(-1) - pred_wave.size(-1) | |
if len_diff > 0: | |
wav_seg_target = wav_seg_target[..., len_diff // 2 : -len_diff // 2] | |
# discriminator loss | |
d_fake = self.model.discriminator(pred_wave.detach()) | |
d_real = self.model.discriminator(wav_seg_target) | |
loss_d = 0 | |
for x_fake, x_real in zip(d_fake, d_real): | |
loss_d += torch.mean(x_fake[-1] ** 2) | |
loss_d += torch.mean((1 - x_real[-1]) ** 2) | |
self.optimizer.zero_grad() | |
self.accelerator.backward(loss_d) | |
grad_norm_d = torch.nn.utils.clip_grad_norm_( | |
self.model.discriminator.parameters(), 10.0 | |
) | |
self.optimizer.step("discriminator") | |
self.optimizer.scheduler(key="discriminator") | |
# generator loss | |
signal = AudioSignal(wav_seg_target, sample_rate=24000) | |
recons = AudioSignal(pred_wave, sample_rate=24000) | |
stft_loss = self.criterions["stft"](recons, signal) | |
mel_loss = self.criterions["mel"](recons, signal) | |
waveform_loss = self.criterions["l1"](recons, signal) | |
d_fake = self.model.discriminator(pred_wave) | |
d_real = self.model.discriminator(wav_seg_target) | |
loss_g = 0 | |
for x_fake in d_fake: | |
loss_g += torch.mean((1 - x_fake[-1]) ** 2) | |
loss_feature = 0 | |
for i in range(len(d_fake)): | |
for j in range(len(d_fake[i]) - 1): | |
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach()) | |
pred_f0, pred_uv = preds["f0"], preds["uv"] | |
rev_pred_f0, rev_pred_uv = rev_preds["rev_f0"], rev_preds["rev_uv"] | |
common_min_size = min(pred_f0.size(-2), f0_targets.size(-1)) | |
f0_targets = f0_targets[..., :common_min_size] | |
real_norm = real_norm[..., :common_min_size] | |
f0_loss = F.smooth_l1_loss( | |
f0_targets, pred_f0.squeeze(-1)[..., :common_min_size] | |
) | |
uv_loss = F.smooth_l1_loss( | |
real_norm, pred_uv.squeeze(-1)[..., :common_min_size] | |
) | |
rev_f0_loss = ( | |
F.smooth_l1_loss(f0_targets, rev_pred_f0.squeeze(-1)[..., :common_min_size]) | |
if rev_pred_f0 is not None | |
else torch.FloatTensor([0]).to(self.accelerator.device) | |
) | |
rev_uv_loss = ( | |
F.smooth_l1_loss(real_norm, rev_pred_uv.squeeze(-1)[..., :common_min_size]) | |
if rev_pred_uv is not None | |
else torch.FloatTensor([0]).to(self.accelerator.device) | |
) | |
tot_f0_loss = f0_loss + rev_f0_loss | |
tot_uv_loss = uv_loss + rev_uv_loss | |
pred_content = preds["content"] | |
rev_pred_content = rev_preds["rev_content"] | |
target_content_latents = w2v_seg[..., :common_min_size] | |
content_loss = self.criterions["content"]( | |
pred_content.transpose(1, 2)[..., :common_min_size], | |
target_content_latents.long(), | |
) | |
rev_content_loss = ( | |
self.criterions["content"]( | |
rev_pred_content.transpose(1, 2)[..., :common_min_size], | |
target_content_latents.long(), | |
) | |
if rev_pred_content is not None | |
else torch.FloatTensor([0]).to(self.accelerator.device) | |
) | |
tot_content_loss = content_loss + rev_content_loss | |
if self.speaker_model is not None: | |
spk_logits = torch.cat( | |
[ | |
self.speaker_model.infer_segment(w16.cpu()[..., :wl])[1] | |
for w16, wl in zip(waves_16k, wave_lengths) | |
], | |
dim=0, | |
) | |
spk_labels = spk_logits.argmax(dim=-1) | |
else: | |
spk_labels = torch.zeros([len(waves_16k)], dtype=torch.long).to( | |
self.accelerator.device | |
) | |
spk_pred_logits = preds["timbre"] | |
spk_loss = F.cross_entropy(spk_pred_logits, spk_labels) | |
x_spk_pred_logits = rev_preds["x_timbre"] | |
x_spk_loss = ( | |
F.cross_entropy(x_spk_pred_logits, spk_labels) | |
if x_spk_pred_logits is not None | |
else torch.FloatTensor([0]).to(self.accelerator.device) | |
) | |
tot_spk_loss = spk_loss + x_spk_loss | |
loss_gen_all = ( | |
mel_loss * 15.0 | |
+ loss_feature * 1.0 | |
+ loss_g * 1.0 | |
+ commitment_loss * 0.25 | |
+ codebook_loss * 1.0 | |
+ tot_f0_loss * 1.0 | |
+ tot_uv_loss * 1.0 | |
+ tot_content_loss * 5.0 | |
+ tot_spk_loss * 5.0 | |
) | |
self.optimizer.zero_grad() | |
self.accelerator.backward(loss_gen_all) | |
with torch.no_grad(): | |
total_loss = loss_gen_all.item() | |
train_losses["stft"] = stft_loss.item() | |
train_losses["mel"] = mel_loss.item() | |
train_losses["l1"] = waveform_loss.item() | |
train_losses["f0"] = f0_loss.item() | |
train_losses["uv"] = uv_loss.item() | |
train_losses["content"] = content_loss.item() | |
train_losses["speaker"] = spk_loss.item() | |
train_losses["rev_f0"] = rev_f0_loss.item() | |
train_losses["rev_uv"] = rev_uv_loss.item() | |
train_losses["rev_content"] = rev_content_loss.item() | |
train_losses["rev_speaker"] = x_spk_loss.item() | |
train_losses["feature"] = loss_feature.item() | |
train_losses["generator"] = loss_g.item() | |
train_losses["commitment"] = commitment_loss.item() | |
train_losses["codebook"] = codebook_loss.item() | |
# discriminators | |
train_losses["discriminator"] = loss_d.item() | |
return total_loss, train_losses | |
def _inference(self, eval_wave): | |
"""Inference during training for test audios.""" | |
z = self.model.encoder( | |
eval_wave[None, None, ...].to(self.accelerator.device).float() | |
) | |
z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer( | |
z, eval_wave[None, None, ...], n_c=self.cfg.model_params.n_c_codebooks | |
) | |
full_pred_wave = self.model.decoder(z) | |
return full_pred_wave[0] | |
def _load_model(self, checkpoint_path=None, resume_type="resume"): | |
"""Load model from checkpoint. If checkpoint_path is None, it will | |
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not | |
None, it will load the checkpoint specified by checkpoint_path. **Only use this | |
method after** ``accelerator.prepare()``. | |
""" | |
if resume_type == "resume": | |
if checkpoint_path is None: | |
available_checkpoints = glob.glob( | |
os.path.join(self.checkpoint_dir, "FAcodc_epoch_*_step_*.pth") | |
) | |
# find the checkpoint that has the highest step number | |
latest_checkpoint = max( | |
available_checkpoints, | |
key=lambda x: int(x.split("_")[-1].split(".")[0]), | |
) | |
earliest_checkpoint = min( | |
available_checkpoints, | |
key=lambda x: int(x.split("_")[-1].split(".")[0]), | |
) | |
# delete the earliest checkpoint | |
if ( | |
earliest_checkpoint != latest_checkpoint | |
and self.accelerator.is_main_process | |
and len(available_checkpoints) > 4 | |
): | |
os.remove(earliest_checkpoint) | |
print(f"Removed {earliest_checkpoint}") | |
else: | |
latest_checkpoint = checkpoint_path | |
self.model, self.optimizer, self.epoch, self.step = load_checkpoint( | |
self.model, | |
self.optimizer, | |
latest_checkpoint, | |
load_only_params=False, | |
ignore_modules=[], | |
is_distributed=self.accelerator.num_processes > 1, | |
) | |
else: | |
raise ValueError("Invalid resume type") | |
return checkpoint_path | |
def _count_parameters(self): | |
total_num = sum( | |
sum(p.numel() for p in self.model[key].parameters()) for key in self.model | |
) | |
# trainable_num = sum(p.numel() for p in self.model.parameters() if p.requires_grad) | |
return total_num | |