Spaces:
Runtime error
Runtime error
File size: 7,993 Bytes
a72119e 496112d 8365126 45471c4 a72119e 262a1a2 a72119e 262a1a2 fb480c5 262a1a2 a72119e 1f22cbc fb480c5 6785fcb f1c7671 de54836 55e1949 262a1a2 45471c4 6785fcb 55e1949 45471c4 262a1a2 6785fcb 262a1a2 55e1949 262a1a2 45471c4 262a1a2 fb480c5 6785fcb 262a1a2 f1c7671 262a1a2 45471c4 262a1a2 45471c4 6785fcb 45471c4 6785fcb 45471c4 6785fcb 45471c4 6785fcb 45471c4 262a1a2 6785fcb 0bc476b 45471c4 262a1a2 6785fcb 262a1a2 6785fcb 262a1a2 55e1949 6d754a8 6785fcb fb480c5 6785fcb fb480c5 6785fcb fb480c5 6785fcb fb480c5 6785fcb 5d2dafa 4902bd9 70e42a3 b1d6fce d3daa33 402afc5 4902bd9 d3daa33 402afc5 d3daa33 402afc5 55e1949 402afc5 d3daa33 55e1949 d3daa33 55e1949 d3daa33 55e1949 d3daa33 55e1949 1b81f82 55e1949 1f22cbc d3daa33 26a50b2 b8c17c8 2189235 d3daa33 55e1949 1f22cbc 2189235 d3daa33 a72119e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
from concurrent.futures import ThreadPoolExecutor
torch.set_float32_matmul_precision("highest")
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
).to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
BATCH_SIZE = 3
executor = ThreadPoolExecutor(max_workers=4) # Adjust as needed
def get_background_image(bg_type, bg_image, background_frames, current_frame_index, video_handling, slow_down_factor):
if bg_type == "Video":
if video_handling == "slow_down":
frame_index = int(current_frame_index / slow_down_factor)
else:
frame_index = current_frame_index
return Image.fromarray(background_frames[frame_index % len(background_frames)])
elif bg_type == "Image":
return bg_image # Directly returns the image path
else: # bg_type == "Color"
return bg_image # bg_image here is the color string
@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
try:
video = mp.VideoFileClip(vid)
try:
audio = video.audio
except AttributeError:
audio = None
if fps == 0:
fps = video.fps
frames = video.iter_frames(fps=fps)
processed_frames = []
yield gr.update(visible=True), gr.update(visible=False) # Update Gradio display
if bg_type == "Video":
background_video = mp.VideoFileClip(bg_video)
if background_video.duration < video.duration and video_handling == "slow_down":
slow_down_factor = video.duration / background_video.duration
else:
slow_down_factor = 1
background_frames = list(background_video.iter_frames(fps=fps))
else:
background_frames = None
slow_down_factor = None # Not needed for image or color backgrounds
bg_frame_index = 0
frame_batch = []
for i, frame in enumerate(frames):
frame_batch.append(frame)
if len(frame_batch) == BATCH_SIZE or i == int(video.fps * video.duration) - 1:
pil_images = [Image.fromarray(f) for f in frame_batch]
if bg_type == "Video":
processed_images = list(executor.map(process, pil_images, [get_background_image(bg_type, bg_image, background_frames, bg_frame_index + j, video_handling, slow_down_factor) for j in range(len(pil_images))]))
bg_frame_index += len(frame_batch)
elif bg_type == "Color":
processed_images = list(executor.map(process, pil_images, [color] * len(pil_images))) # Use color directly
elif bg_type == "Image":
processed_images = list(executor.map(process, pil_images, [bg_image] * len(pil_images))) # Use image path directly
else:
processed_images = pil_images # No processing needed
for processed_image in processed_images:
processed_frames.append(np.array(processed_image))
yield processed_image, None # Update Gradio with processed images
frame_batch = []
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
if audio:
processed_video = processed_video.set_audio(audio)
# Save processed video to a temporary file
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
unique_filename = str(uuid.uuid4()) + ".mp4"
temp_filepath = os.path.join(temp_dir, unique_filename)
processed_video.write_videofile(temp_filepath, codec="libx264", logger=None)
yield gr.update(visible=False), gr.update(visible=True) # Update Gradio display
yield processed_image, temp_filepath # Return final output
except Exception as e:
print(f"Error: {e}")
yield gr.update(visible=False), gr.update(visible=True)
yield None, f"Error processing video: {e}"
def process(image, bg):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
if isinstance(bg, str) and bg.startswith("#"): # If bg is a color
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
background = Image.new("RGBA", image_size, color_rgb + (255,)) # Create image with color
elif isinstance(bg, Image.Image):
background = bg.convert("RGBA").resize(image_size) #Resize if bg is an image
else: #If bg is an image path
background = Image.open(bg).convert("RGBA").resize(image_size) # Open and resize image
image = Image.composite(image, background, mask)
return image
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
with gr.Row():
in_video = gr.Video(label="Input Video", interactive=True)
stream_image = gr.Image(label="Streaming Output", visible=False)
out_video = gr.Video(label="Final Output Video")
submit_button = gr.Button("Change Background", interactive=True)
with gr.Row():
fps_slider = gr.Slider(
minimum=0,
maximum=60,
step=1,
value=0,
label="Output FPS (0 will inherit the original fps value)",
interactive=True
)
bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True)
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
with gr.Column(visible=False) as video_handling_options:
video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)
def update_visibility(bg_type):
if bg_type == "Color":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif bg_type == "Image":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif bg_type == "Video":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])
examples = gr.Examples(
[
["rickroll-2sec.mp4", "Video", None, "background.mp4"],
["rickroll-2sec.mp4", "Image", "images.webp", None],
["rickroll-2sec.mp4", "Color", None, None],
],
inputs=[in_video, bg_type, bg_image, bg_video],
outputs=[stream_image, out_video],
fn=fn,
cache_examples=True,
cache_mode="eager",
)
submit_button.click(
fn,
inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio],
outputs=[stream_image, out_video],
)
if __name__ == "__main__":
demo.launch(show_error=True) |