KingNish's picture
Update app.py
6785fcb verified
raw
history blame
7.99 kB
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
from concurrent.futures import ThreadPoolExecutor
torch.set_float32_matmul_precision("highest")
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
).to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
BATCH_SIZE = 3
executor = ThreadPoolExecutor(max_workers=4) # Adjust as needed
def get_background_image(bg_type, bg_image, background_frames, current_frame_index, video_handling, slow_down_factor):
if bg_type == "Video":
if video_handling == "slow_down":
frame_index = int(current_frame_index / slow_down_factor)
else:
frame_index = current_frame_index
return Image.fromarray(background_frames[frame_index % len(background_frames)])
elif bg_type == "Image":
return bg_image # Directly returns the image path
else: # bg_type == "Color"
return bg_image # bg_image here is the color string
@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
try:
video = mp.VideoFileClip(vid)
try:
audio = video.audio
except AttributeError:
audio = None
if fps == 0:
fps = video.fps
frames = video.iter_frames(fps=fps)
processed_frames = []
yield gr.update(visible=True), gr.update(visible=False) # Update Gradio display
if bg_type == "Video":
background_video = mp.VideoFileClip(bg_video)
if background_video.duration < video.duration and video_handling == "slow_down":
slow_down_factor = video.duration / background_video.duration
else:
slow_down_factor = 1
background_frames = list(background_video.iter_frames(fps=fps))
else:
background_frames = None
slow_down_factor = None # Not needed for image or color backgrounds
bg_frame_index = 0
frame_batch = []
for i, frame in enumerate(frames):
frame_batch.append(frame)
if len(frame_batch) == BATCH_SIZE or i == int(video.fps * video.duration) - 1:
pil_images = [Image.fromarray(f) for f in frame_batch]
if bg_type == "Video":
processed_images = list(executor.map(process, pil_images, [get_background_image(bg_type, bg_image, background_frames, bg_frame_index + j, video_handling, slow_down_factor) for j in range(len(pil_images))]))
bg_frame_index += len(frame_batch)
elif bg_type == "Color":
processed_images = list(executor.map(process, pil_images, [color] * len(pil_images))) # Use color directly
elif bg_type == "Image":
processed_images = list(executor.map(process, pil_images, [bg_image] * len(pil_images))) # Use image path directly
else:
processed_images = pil_images # No processing needed
for processed_image in processed_images:
processed_frames.append(np.array(processed_image))
yield processed_image, None # Update Gradio with processed images
frame_batch = []
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
if audio:
processed_video = processed_video.set_audio(audio)
# Save processed video to a temporary file
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
unique_filename = str(uuid.uuid4()) + ".mp4"
temp_filepath = os.path.join(temp_dir, unique_filename)
processed_video.write_videofile(temp_filepath, codec="libx264", logger=None)
yield gr.update(visible=False), gr.update(visible=True) # Update Gradio display
yield processed_image, temp_filepath # Return final output
except Exception as e:
print(f"Error: {e}")
yield gr.update(visible=False), gr.update(visible=True)
yield None, f"Error processing video: {e}"
def process(image, bg):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
if isinstance(bg, str) and bg.startswith("#"): # If bg is a color
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
background = Image.new("RGBA", image_size, color_rgb + (255,)) # Create image with color
elif isinstance(bg, Image.Image):
background = bg.convert("RGBA").resize(image_size) #Resize if bg is an image
else: #If bg is an image path
background = Image.open(bg).convert("RGBA").resize(image_size) # Open and resize image
image = Image.composite(image, background, mask)
return image
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
with gr.Row():
in_video = gr.Video(label="Input Video", interactive=True)
stream_image = gr.Image(label="Streaming Output", visible=False)
out_video = gr.Video(label="Final Output Video")
submit_button = gr.Button("Change Background", interactive=True)
with gr.Row():
fps_slider = gr.Slider(
minimum=0,
maximum=60,
step=1,
value=0,
label="Output FPS (0 will inherit the original fps value)",
interactive=True
)
bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True)
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
with gr.Column(visible=False) as video_handling_options:
video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)
def update_visibility(bg_type):
if bg_type == "Color":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif bg_type == "Image":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif bg_type == "Video":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])
examples = gr.Examples(
[
["rickroll-2sec.mp4", "Video", None, "background.mp4"],
["rickroll-2sec.mp4", "Image", "images.webp", None],
["rickroll-2sec.mp4", "Color", None, None],
],
inputs=[in_video, bg_type, bg_image, bg_video],
outputs=[stream_image, out_video],
fn=fn,
cache_examples=True,
cache_mode="eager",
)
submit_button.click(
fn,
inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio],
outputs=[stream_image, out_video],
)
if __name__ == "__main__":
demo.launch(show_error=True)