File size: 770 Bytes
a5cc7a0
 
e4a6428
a5cc7a0
 
dbf6cc2
ff7c210
18feec4
e4a6428
 
18feec4
a5cc7a0
 
0551a11
18feec4
 
ff7c210
 
18feec4
 
a5cc7a0
 
18feec4
ff7c210
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from sentence_transformers import SentenceTransformer
import gradio as gr
import ast

# Load the pre-trained model
model = SentenceTransformer('all-MiniLM-L6-v2')

def get_embeddings(sentences):
    chunks = ast.literal_eval(sentences)
    embeddings = model.encode(chunks, convert_to_tensor=True)
    return embeddings.tolist()

# Define the Gradio interface
interface = gr.Interface(
    fn=get_embeddings,  # Function to call
    inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"),  # Input component
    # outputs=gr.JSON(),
    outputs=gr.Textbox(label="Embeddings"),
    title="Sentence Embeddings",  # Interface title
    description="Enter sentences to get their embeddings."  # Description
)

# Launch the interface
interface.launch()