embed / app.py
codeblacks's picture
Create app.py
a5cc7a0 verified
raw
history blame
749 Bytes
from sentence_transformers import SentenceTransformer
import gradio as gr
# Load the pre-trained model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Define the function to process requests
def generate_embeddings(chunks):
embeddings = embedding_model.encode(chunks, convert_to_tensor=True)
return embeddings.tolist() # Convert tensor to list for Gradio
# Define the Gradio interface
iface = gr.Interface(
fn=generate_embeddings,
inputs=gr.inputs.Textbox(lines=5, placeholder="Enter text chunks here..."),
outputs=gr.outputs.JSON(),
title="Sentence Transformer Embeddings",
description="Generate embeddings for input text chunks."
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()