File size: 748 Bytes
718e3b3
 
 
 
 
 
 
f3c5d4d
1bab135
718e3b3
 
 
 
 
3777eab
5f04dc2
718e3b3
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import gradio as gr
from sentence_transformers import SentenceTransformer

# Load the pre-trained model
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

def get_embeddings(sentences):
    embeddings = model.encode(sentences, convert_to_tensor=True)
    return str(embeddings.tolist())

# Define the Gradio interface
interface = gr.Interface(
    fn=get_embeddings,  # Function to call
    inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"),  # Input component
    # outputs=gr.JSON(),
    outputs=gr.Textbox(label="Embeddings"),
    title="Sentence Embeddings",  # Interface title
    description="Enter sentences to get their embeddings."  # Description
)

# Launch the interface
interface.launch()