codeblacks's picture
Update app.py
1bab135 verified
raw
history blame
748 Bytes
import gradio as gr
from sentence_transformers import SentenceTransformer
# Load the pre-trained model
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def get_embeddings(sentences):
embeddings = model.encode(sentences, convert_to_tensor=True)
return str(embeddings.tolist())
# Define the Gradio interface
interface = gr.Interface(
fn=get_embeddings, # Function to call
inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component
# outputs=gr.JSON(),
outputs=gr.Textbox(label="Embeddings"),
title="Sentence Embeddings", # Interface title
description="Enter sentences to get their embeddings." # Description
)
# Launch the interface
interface.launch()