Spaces:
Running
Running
import gradio as gr | |
import openai | |
import os | |
import json | |
# Set OpenAI API key and base URL from environment variables | |
openai.api_key = os.environ["OPENAI_API_KEY"] | |
openai.base_url = os.environ["OPENAI_BASE_URL"] | |
# Define the number of results per page and total results to generate | |
RESULTS_PER_PAGE = 10 | |
TOTAL_RESULTS = 30 # Generate 30 results to allow pagination | |
def fetch_search_results(query): | |
"""Fetch search results from the LLM based on the user's query.""" | |
if not query.strip(): | |
return None, "Please enter a search query." | |
prompt = f""" | |
You are a search engine that provides informative and relevant results. For the given query '{query}', | |
generate {TOTAL_RESULTS} search results, each with a title and a snippet that summarizes the information. | |
Format the response as a JSON array of objects, where each object has 'title' and 'snippet' fields. | |
Ensure the results are diverse and relevant to the query. | |
""" | |
try: | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", # Adjust model name as needed | |
messages=[ | |
{"role": "system", "content": "You are a helpful search engine."}, | |
{"role": "user", "content": prompt} | |
], | |
response_format="json_object" | |
) | |
content = response.choices[0].message.content | |
results = json.loads(content) | |
# Handle different possible JSON structures | |
if isinstance(results, dict) and "results" in results: | |
results = results["results"] | |
elif isinstance(results, list): | |
pass | |
else: | |
return None, "Error: Unexpected JSON structure." | |
return results, None | |
except openai.error.OpenAIError as e: | |
return None, f"Error: {str(e)}" | |
except json.JSONDecodeError: | |
return None, "Error: Failed to parse JSON response." | |
except Exception as e: | |
return None, f"Unexpected error: {str(e)}" | |
def display_search_results(query, page=1): | |
"""Display search results for the given query and page number.""" | |
results, error = fetch_search_results(query) | |
if error: | |
return error, None, None | |
# Calculate pagination boundaries | |
start_idx = (page - 1) * RESULTS_PER_PAGE | |
end_idx = start_idx + RESULTS_PER_PAGE | |
total_pages = (len(results) + RESULTS_PER_PAGE - 1) // RESULTS_PER_PAGE | |
# Ensure indices are within bounds | |
if start_idx >= len(results): | |
return "No more results to display.", None, None | |
paginated_results = results[start_idx:end_idx] | |
# Format results into HTML | |
html = """ | |
<style> | |
.search-result { | |
margin-bottom: 20px; | |
} | |
.search-result h3 { | |
color: blue; | |
font-size: 18px; | |
margin: 0; | |
} | |
.search-result p { | |
font-size: 14px; | |
margin: 5px 0 0 0; | |
} | |
.pagination { | |
margin-top: 20px; | |
} | |
</style> | |
<div> | |
""" | |
html += f"<h2>Search Results for '{query}' (Page {page} of {total_pages})</h2>" | |
html += "<ul>" | |
for result in paginated_results: | |
title = result.get("title", "No title") | |
snippet = result.get("snippet", "No snippet") | |
html += f'<li class="search-result"><h3>{title}</h3><p>{snippet}</p></li>' | |
html += "</ul>" | |
# Add pagination controls (simulated with buttons) | |
html += '<div class="pagination">' | |
if page > 1: | |
html += f'<button onclick="update_page({page - 1})">Previous</button>' | |
if page < total_pages: | |
html += f'<button onclick="update_page({page + 1})">Next</button>' | |
html += '</div></div>' | |
# Note: Gradio doesn't support interactive JS directly in HTML outputs, | |
# so we return page numbers for button functionality | |
return html, page - 1 if page > 1 else None, page + 1 if page < total_pages else None | |
def search_handler(query, page): | |
"""Handle search submission and pagination.""" | |
html, prev_page, next_page = display_search_results(query, page) | |
return html | |
# Build Gradio interface with Blocks for state management | |
with gr.Blocks(title="LLM Search Engine") as app: | |
gr.Markdown("# LLM Search Engine") | |
gr.Markdown("Enter a query below to search using a large language model.") | |
query_input = gr.Textbox(label="Search Query", placeholder="Type your search here...") | |
search_button = gr.Button("Search") | |
output_html = gr.HTML() | |
# Hidden state to track current page | |
page_state = gr.State(value=1) | |
# Define submit behavior | |
def on_submit(query, page): | |
return search_handler(query, page), page | |
search_button.click( | |
fn=on_submit, | |
inputs=[query_input, page_state], | |
outputs=[output_html, page_state] | |
) | |
# Note: For full pagination, we simulate Previous/Next with additional buttons | |
with gr.Row(): | |
prev_button = gr.Button("Previous", visible=False) | |
next_button = gr.Button("Next", visible=False) | |
def update_page(query, page, direction): | |
new_page = page + direction | |
html, prev_page, next_page = display_search_results(query, new_page) | |
return html, new_page, gr.update(visible=prev_page is not None), gr.update(visible=next_page is not None) | |
prev_button.click( | |
fn=lambda q, p: update_page(q, p, -1), | |
inputs=[query_input, page_state], | |
outputs=[output_html, page_state, prev_button, next_button] | |
) | |
next_button.click( | |
fn=lambda q, p: update_page(q, p, 1), | |
inputs=[query_input, page_state], | |
outputs=[output_html, page_state, prev_button, next_button] | |
) | |
# Update button visibility after search | |
search_button.click( | |
fn=lambda q, p: (search_handler(q, p), p, gr.update(visible=p > 1), gr.update(visible=True)), | |
inputs=[query_input, page_state], | |
outputs=[output_html, page_state, prev_button, next_button] | |
) | |
app.launch() |