LLMSearchEngine / app.py
codelion's picture
Create app.py
4da8ab2 verified
raw
history blame
5.99 kB
import gradio as gr
import openai
import os
import json
# Set OpenAI API key and base URL from environment variables
openai.api_key = os.environ["OPENAI_API_KEY"]
openai.base_url = os.environ["OPENAI_BASE_URL"]
# Define the number of results per page and total results to generate
RESULTS_PER_PAGE = 10
TOTAL_RESULTS = 30 # Generate 30 results to allow pagination
def fetch_search_results(query):
"""Fetch search results from the LLM based on the user's query."""
if not query.strip():
return None, "Please enter a search query."
prompt = f"""
You are a search engine that provides informative and relevant results. For the given query '{query}',
generate {TOTAL_RESULTS} search results, each with a title and a snippet that summarizes the information.
Format the response as a JSON array of objects, where each object has 'title' and 'snippet' fields.
Ensure the results are diverse and relevant to the query.
"""
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo", # Adjust model name as needed
messages=[
{"role": "system", "content": "You are a helpful search engine."},
{"role": "user", "content": prompt}
],
response_format="json_object"
)
content = response.choices[0].message.content
results = json.loads(content)
# Handle different possible JSON structures
if isinstance(results, dict) and "results" in results:
results = results["results"]
elif isinstance(results, list):
pass
else:
return None, "Error: Unexpected JSON structure."
return results, None
except openai.error.OpenAIError as e:
return None, f"Error: {str(e)}"
except json.JSONDecodeError:
return None, "Error: Failed to parse JSON response."
except Exception as e:
return None, f"Unexpected error: {str(e)}"
def display_search_results(query, page=1):
"""Display search results for the given query and page number."""
results, error = fetch_search_results(query)
if error:
return error, None, None
# Calculate pagination boundaries
start_idx = (page - 1) * RESULTS_PER_PAGE
end_idx = start_idx + RESULTS_PER_PAGE
total_pages = (len(results) + RESULTS_PER_PAGE - 1) // RESULTS_PER_PAGE
# Ensure indices are within bounds
if start_idx >= len(results):
return "No more results to display.", None, None
paginated_results = results[start_idx:end_idx]
# Format results into HTML
html = """
<style>
.search-result {
margin-bottom: 20px;
}
.search-result h3 {
color: blue;
font-size: 18px;
margin: 0;
}
.search-result p {
font-size: 14px;
margin: 5px 0 0 0;
}
.pagination {
margin-top: 20px;
}
</style>
<div>
"""
html += f"<h2>Search Results for '{query}' (Page {page} of {total_pages})</h2>"
html += "<ul>"
for result in paginated_results:
title = result.get("title", "No title")
snippet = result.get("snippet", "No snippet")
html += f'<li class="search-result"><h3>{title}</h3><p>{snippet}</p></li>'
html += "</ul>"
# Add pagination controls (simulated with buttons)
html += '<div class="pagination">'
if page > 1:
html += f'<button onclick="update_page({page - 1})">Previous</button>'
if page < total_pages:
html += f'<button onclick="update_page({page + 1})">Next</button>'
html += '</div></div>'
# Note: Gradio doesn't support interactive JS directly in HTML outputs,
# so we return page numbers for button functionality
return html, page - 1 if page > 1 else None, page + 1 if page < total_pages else None
def search_handler(query, page):
"""Handle search submission and pagination."""
html, prev_page, next_page = display_search_results(query, page)
return html
# Build Gradio interface with Blocks for state management
with gr.Blocks(title="LLM Search Engine") as app:
gr.Markdown("# LLM Search Engine")
gr.Markdown("Enter a query below to search using a large language model.")
query_input = gr.Textbox(label="Search Query", placeholder="Type your search here...")
search_button = gr.Button("Search")
output_html = gr.HTML()
# Hidden state to track current page
page_state = gr.State(value=1)
# Define submit behavior
def on_submit(query, page):
return search_handler(query, page), page
search_button.click(
fn=on_submit,
inputs=[query_input, page_state],
outputs=[output_html, page_state]
)
# Note: For full pagination, we simulate Previous/Next with additional buttons
with gr.Row():
prev_button = gr.Button("Previous", visible=False)
next_button = gr.Button("Next", visible=False)
def update_page(query, page, direction):
new_page = page + direction
html, prev_page, next_page = display_search_results(query, new_page)
return html, new_page, gr.update(visible=prev_page is not None), gr.update(visible=next_page is not None)
prev_button.click(
fn=lambda q, p: update_page(q, p, -1),
inputs=[query_input, page_state],
outputs=[output_html, page_state, prev_button, next_button]
)
next_button.click(
fn=lambda q, p: update_page(q, p, 1),
inputs=[query_input, page_state],
outputs=[output_html, page_state, prev_button, next_button]
)
# Update button visibility after search
search_button.click(
fn=lambda q, p: (search_handler(q, p), p, gr.update(visible=p > 1), gr.update(visible=True)),
inputs=[query_input, page_state],
outputs=[output_html, page_state, prev_button, next_button]
)
app.launch()