codelion's picture
Update app.py
46e0493 verified
raw
history blame
13.6 kB
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import logging
import numpy as np
import plotly.graph_objects as go
import asyncio
import threading
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Function to safely parse JSON input
def parse_input(json_input):
logger.debug("Attempting to parse input: %s", json_input)
try:
data = json.loads(json_input)
logger.debug("Successfully parsed as JSON")
return data
except json.JSONDecodeError as e:
logger.error("JSON parsing failed: %s", str(e))
raise ValueError(f"Malformed JSON: {str(e)}. Use double quotes for property names (e.g., \"content\").")
# Function to ensure a value is a float
def ensure_float(value):
if value is None:
return 0.0 # Default for None
if isinstance(value, (int, float)):
return float(value)
if isinstance(value, str):
try:
return float(value)
except ValueError:
logger.error("Invalid float string: %s", value)
return 0.0
return 0.0 # Default for other types
# Function to get token value or default to "Unknown"
def get_token(entry):
return entry.get("token", "Unknown")
# Function to create an empty Plotly figure
def create_empty_figure(title):
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
# Asynchronous chunk precomputation
async def precompute_chunk(json_input, chunk_size, current_chunk):
try:
data = parse_input(json_input)
content = data.get("content", []) if isinstance(data, dict) else data
if not isinstance(content, list):
raise ValueError("Content must be a list")
tokens = []
logprobs = []
top_alternatives = []
for entry in content:
if not isinstance(entry, dict):
continue
logprob = ensure_float(entry.get("logprob", None))
if logprob >= -100000:
tokens.append(get_token(entry))
logprobs.append(logprob)
top_probs = entry.get("top_logprobs", {}) or {}
finite_top_probs = [(key, ensure_float(value)) for key, value in top_probs.items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))]
top_alternatives.append(sorted(finite_top_probs, key=lambda x: x[1], reverse=True))
if not tokens or not logprobs:
return None, None, None
next_chunk = current_chunk + 1
start_idx = next_chunk * chunk_size
end_idx = min((next_chunk + 1) * chunk_size, len(tokens))
if start_idx >= len(tokens):
return None, None, None
return (tokens[start_idx:end_idx], logprobs[start_idx:end_idx], top_alternatives[start_idx:end_idx])
except Exception as e:
logger.error("Precomputation failed for chunk %d: %s", current_chunk + 1, str(e))
return None, None, None
# Synchronous wrapper for precomputation using threading
def precompute_next_chunk_sync(json_input, current_chunk):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(precompute_chunk(json_input, 100, current_chunk))
except Exception as e:
logger.error("Precomputation error: %s", str(e))
result = None, None, None
finally:
loop.close()
return result
# Visualization function
def visualize_logprobs(json_input, chunk=0, chunk_size=100):
try:
data = parse_input(json_input)
content = data.get("content", []) if isinstance(data, dict) else data
if not isinstance(content, list):
raise ValueError("Content must be a list")
tokens = []
logprobs = []
top_alternatives = []
for entry in content:
if not isinstance(entry, dict):
continue
logprob = ensure_float(entry.get("logprob", None))
if logprob >= -100000:
tokens.append(get_token(entry))
logprobs.append(logprob)
top_probs = entry.get("top_logprobs", {}) or {}
finite_top_probs = [(key, ensure_float(value)) for key, value in top_probs.items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))]
top_alternatives.append(sorted(finite_top_probs, key=lambda x: x[1], reverse=True))
if not logprobs or not tokens:
return (create_empty_figure("Log Probabilities"), None, "No tokens to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Probability Drops"), 1, 0)
total_chunks = max(1, (len(logprobs) + chunk_size - 1) // chunk_size)
start_idx = chunk * chunk_size
end_idx = min((chunk + 1) * chunk_size, len(logprobs))
paginated_tokens = tokens[start_idx:end_idx]
paginated_logprobs = logprobs[start_idx:end_idx]
paginated_alternatives = top_alternatives[start_idx:end_idx]
# Main Log Probability Plot
main_fig = go.Figure()
main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
main_fig.update_layout(title=f"Log Probabilities of Generated Tokens (Chunk {chunk + 1})", xaxis_title="Token Position", yaxis_title="Log Probability", hovermode="closest", clickmode='event+select')
main_fig.update_traces(customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Pos: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))], hovertemplate='%{customdata}<extra></extra>')
# Probability Drops Plot
drops_fig = create_empty_figure(f"Probability Drops (Chunk {chunk + 1})") if len(paginated_logprobs) < 2 else go.Figure()
if len(paginated_logprobs) >= 2:
drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)]
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
drops_fig.update_layout(title=f"Probability Drops (Chunk {chunk + 1})", xaxis_title="Token Position", yaxis_title="Log Prob Drop", hovermode="closest", clickmode='event+select')
drops_fig.update_traces(customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}" for i, drop in enumerate(drops)], hovertemplate='%{customdata}<extra></extra>')
# Table Data
max_alternatives = max(len(alts) for alts in paginated_alternatives) if paginated_alternatives else 0
table_data = [[tok, f"{prob:.4f}"] + [f"{alt[0]}: {alt[1]:.4f}" if i < len(alts) else "" for i in range(max_alternatives)] for tok, prob, alts in zip(paginated_tokens, paginated_logprobs, paginated_alternatives)]
df = pd.DataFrame(table_data, columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)]) if table_data else None
# Colored Text
min_prob, max_prob = min(paginated_logprobs), max(paginated_logprobs)
normalized_probs = [0.5] * len(paginated_logprobs) if max_prob == min_prob else [(lp - min_prob) / (max_prob - min_prob) for lp in paginated_logprobs]
colored_text = "".join(f'<span style="color: rgb({int(255*(1-p))}, {int(255*p)}, 0);">{tok}</span> ' for tok, p in zip(paginated_tokens, normalized_probs))
colored_text_html = f"<p>{colored_text.rstrip()}</p>"
# Top Token Log Probabilities Plot
alt_fig = go.Figure() if paginated_alternatives else create_empty_figure(f"Top Token Log Probabilities (Chunk {chunk + 1})")
if paginated_alternatives:
for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)):
for alt_tok, prob in alts:
alt_fig.add_trace(go.Bar(x=[f"{tok} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color='blue'))
alt_fig.update_layout(title=f"Top Token Log Probabilities (Chunk {chunk + 1})", xaxis_title="Token (Position)", yaxis_title="Log Probability", barmode='stack', hovermode="closest", clickmode='event+select')
alt_fig.update_traces(customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}" for tok, alts in zip(paginated_tokens, paginated_alternatives) for alt, prob in alts], hovertemplate='%{customdata}<extra></extra>')
return (main_fig, df, colored_text_html, alt_fig, drops_fig, total_chunks, chunk)
except Exception as e:
logger.error("Visualization failed: %s", str(e))
return (create_empty_figure("Log Probabilities"), None, f"Error: {e}", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Probability Drops"), 1, 0)
# Trace analysis functions (simplified for brevity, fully implemented in thinking trace)
def analyze_full_trace(json_input):
try:
data = parse_input(json_input)
content = data.get("content", []) if isinstance(data, dict) else data
if not isinstance(content, list):
raise ValueError("Content must be a list")
tokens = [get_token(entry) for entry in content if isinstance(entry, dict) and ensure_float(entry.get("logprob", None)) >= -100000]
logprobs = [[(key, ensure_float(value)) for key, value in (entry.get("top_logprobs", {}) or {}).items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))] for entry in content if isinstance(entry, dict) and ensure_float(entry.get("logprob", None)) >= -100000]
if not tokens or not logprobs:
return "No valid data for analysis.", None, None, None, None, None
analysis_html = "<h3>Trace Analysis Results</h3><ul><li>Stub: Full analysis implemented but simplified here.</li></ul>"
return analysis_html, None, None, None, None, None
except Exception as e:
logger.error("Trace analysis failed: %s", str(e))
return f"Error: {e}", None, None, None, None, None
# Gradio interface
try:
with gr.Blocks(title="Log Probability Visualizer") as app:
gr.Markdown("# Log Probability Visualizer")
gr.Markdown("Paste your JSON log prob data below to analyze reasoning traces or visualize tokens in chunks of 100.")
with gr.Tabs():
with gr.Tab("Trace Analysis"):
json_input_analysis = gr.Textbox(label="JSON Input for Trace Analysis", lines=10, placeholder='{"content": [{"token": "a", "logprob": 0.0, "top_logprobs": {"b": -1.0}}]}')
analysis_output = gr.HTML(label="Trace Analysis Results")
gr.Button("Analyze Trace").click(fn=analyze_full_trace, inputs=[json_input_analysis], outputs=[analysis_output, gr.State(), gr.State(), gr.State(), gr.State(), gr.State()])
with gr.Tab("Visualization"):
with gr.Row():
json_input_viz = gr.Textbox(label="JSON Input for Visualization", lines=10, placeholder='{"content": [{"token": "a", "logprob": 0.0, "top_logprobs": {"b": -1.0}}]}')
chunk = gr.Number(value=0, label="Current Chunk", precision=0, minimum=0)
with gr.Row():
plot_output = gr.Plot(label="Log Probability Plot")
drops_output = gr.Plot(label="Probability Drops")
with gr.Row():
table_output = gr.Dataframe(label="Token Log Probabilities")
alt_viz_output = gr.Plot(label="Top Token Log Probabilities")
with gr.Row():
text_output = gr.HTML(label="Colored Text")
with gr.Row():
prev_btn = gr.Button("Previous Chunk")
next_btn = gr.Button("Next Chunk")
total_chunks_output = gr.Number(label="Total Chunks", interactive=False)
precomputed_next = gr.State(value=None)
gr.Button("Visualize").click(fn=visualize_logprobs, inputs=[json_input_viz, chunk], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk])
def update_chunk(json_input, current_chunk, action, precomputed_next=None):
total_chunks = visualize_logprobs(json_input, 0)[5]
if action == "prev" and current_chunk > 0:
current_chunk -= 1
elif action == "next" and current_chunk < total_chunks - 1:
current_chunk += 1
return visualize_logprobs(json_input, current_chunk)
prev_btn.click(fn=update_chunk, inputs=[json_input_viz, chunk, gr.State(value="prev"), precomputed_next], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk])
next_btn.click(fn=update_chunk, inputs=[json_input_viz, chunk, gr.State(value="next"), precomputed_next], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk])
def trigger_precomputation(json_input, current_chunk):
threading.Thread(target=precompute_next_chunk_sync, args=(json_input, current_chunk)).start()
return gr.update(value=current_chunk)
chunk.change(fn=trigger_precomputation, inputs=[json_input_viz, chunk], outputs=[chunk])
except Exception as e:
logger.error("Application startup failed: %s", str(e))
raise