Spaces:
Running
Running
File size: 13,583 Bytes
0244d3c 6934db6 c28bdaa 527fd08 0e1182d cbaf223 9ba1537 46e0493 527fd08 d8a969c 46e0493 d8a969c 527fd08 d8a969c 527fd08 d8a969c 46e0493 0244d3c 46e0493 527fd08 46e0493 527fd08 46e0493 527fd08 46e0493 7d5d680 46e0493 7d5d680 6b2ca38 46e0493 9ba1537 46e0493 9ba1537 46e0493 9ba1537 46e0493 9ba1537 46e0493 9ba1537 46e0493 71e7643 0244d3c d8a969c 46e0493 c28bdaa 46e0493 c28bdaa 0d41503 527fd08 46e0493 9ba1537 527fd08 46e0493 ccde0a2 46e0493 9ba1537 46e0493 cbaf223 46e0493 cbaf223 9ba1537 46e0493 9ba1537 cbaf223 46e0493 181b7be 46e0493 0244d3c 46e0493 b55a616 46e0493 b55a616 46e0493 b55a616 46e0493 b55a616 46e0493 b55a616 46e0493 4615d41 46e0493 181b7be 4615d41 46e0493 9ba1537 4615d41 46e0493 4615d41 46e0493 4615d41 46e0493 4615d41 46e0493 4615d41 46e0493 4615d41 46e0493 4615d41 46e0493 9ba1537 4615d41 46e0493 4615d41 46e0493 4615d41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import logging
import numpy as np
import plotly.graph_objects as go
import asyncio
import threading
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Function to safely parse JSON input
def parse_input(json_input):
logger.debug("Attempting to parse input: %s", json_input)
try:
data = json.loads(json_input)
logger.debug("Successfully parsed as JSON")
return data
except json.JSONDecodeError as e:
logger.error("JSON parsing failed: %s", str(e))
raise ValueError(f"Malformed JSON: {str(e)}. Use double quotes for property names (e.g., \"content\").")
# Function to ensure a value is a float
def ensure_float(value):
if value is None:
return 0.0 # Default for None
if isinstance(value, (int, float)):
return float(value)
if isinstance(value, str):
try:
return float(value)
except ValueError:
logger.error("Invalid float string: %s", value)
return 0.0
return 0.0 # Default for other types
# Function to get token value or default to "Unknown"
def get_token(entry):
return entry.get("token", "Unknown")
# Function to create an empty Plotly figure
def create_empty_figure(title):
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
# Asynchronous chunk precomputation
async def precompute_chunk(json_input, chunk_size, current_chunk):
try:
data = parse_input(json_input)
content = data.get("content", []) if isinstance(data, dict) else data
if not isinstance(content, list):
raise ValueError("Content must be a list")
tokens = []
logprobs = []
top_alternatives = []
for entry in content:
if not isinstance(entry, dict):
continue
logprob = ensure_float(entry.get("logprob", None))
if logprob >= -100000:
tokens.append(get_token(entry))
logprobs.append(logprob)
top_probs = entry.get("top_logprobs", {}) or {}
finite_top_probs = [(key, ensure_float(value)) for key, value in top_probs.items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))]
top_alternatives.append(sorted(finite_top_probs, key=lambda x: x[1], reverse=True))
if not tokens or not logprobs:
return None, None, None
next_chunk = current_chunk + 1
start_idx = next_chunk * chunk_size
end_idx = min((next_chunk + 1) * chunk_size, len(tokens))
if start_idx >= len(tokens):
return None, None, None
return (tokens[start_idx:end_idx], logprobs[start_idx:end_idx], top_alternatives[start_idx:end_idx])
except Exception as e:
logger.error("Precomputation failed for chunk %d: %s", current_chunk + 1, str(e))
return None, None, None
# Synchronous wrapper for precomputation using threading
def precompute_next_chunk_sync(json_input, current_chunk):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(precompute_chunk(json_input, 100, current_chunk))
except Exception as e:
logger.error("Precomputation error: %s", str(e))
result = None, None, None
finally:
loop.close()
return result
# Visualization function
def visualize_logprobs(json_input, chunk=0, chunk_size=100):
try:
data = parse_input(json_input)
content = data.get("content", []) if isinstance(data, dict) else data
if not isinstance(content, list):
raise ValueError("Content must be a list")
tokens = []
logprobs = []
top_alternatives = []
for entry in content:
if not isinstance(entry, dict):
continue
logprob = ensure_float(entry.get("logprob", None))
if logprob >= -100000:
tokens.append(get_token(entry))
logprobs.append(logprob)
top_probs = entry.get("top_logprobs", {}) or {}
finite_top_probs = [(key, ensure_float(value)) for key, value in top_probs.items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))]
top_alternatives.append(sorted(finite_top_probs, key=lambda x: x[1], reverse=True))
if not logprobs or not tokens:
return (create_empty_figure("Log Probabilities"), None, "No tokens to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Probability Drops"), 1, 0)
total_chunks = max(1, (len(logprobs) + chunk_size - 1) // chunk_size)
start_idx = chunk * chunk_size
end_idx = min((chunk + 1) * chunk_size, len(logprobs))
paginated_tokens = tokens[start_idx:end_idx]
paginated_logprobs = logprobs[start_idx:end_idx]
paginated_alternatives = top_alternatives[start_idx:end_idx]
# Main Log Probability Plot
main_fig = go.Figure()
main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
main_fig.update_layout(title=f"Log Probabilities of Generated Tokens (Chunk {chunk + 1})", xaxis_title="Token Position", yaxis_title="Log Probability", hovermode="closest", clickmode='event+select')
main_fig.update_traces(customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Pos: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))], hovertemplate='%{customdata}<extra></extra>')
# Probability Drops Plot
drops_fig = create_empty_figure(f"Probability Drops (Chunk {chunk + 1})") if len(paginated_logprobs) < 2 else go.Figure()
if len(paginated_logprobs) >= 2:
drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)]
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
drops_fig.update_layout(title=f"Probability Drops (Chunk {chunk + 1})", xaxis_title="Token Position", yaxis_title="Log Prob Drop", hovermode="closest", clickmode='event+select')
drops_fig.update_traces(customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}" for i, drop in enumerate(drops)], hovertemplate='%{customdata}<extra></extra>')
# Table Data
max_alternatives = max(len(alts) for alts in paginated_alternatives) if paginated_alternatives else 0
table_data = [[tok, f"{prob:.4f}"] + [f"{alt[0]}: {alt[1]:.4f}" if i < len(alts) else "" for i in range(max_alternatives)] for tok, prob, alts in zip(paginated_tokens, paginated_logprobs, paginated_alternatives)]
df = pd.DataFrame(table_data, columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)]) if table_data else None
# Colored Text
min_prob, max_prob = min(paginated_logprobs), max(paginated_logprobs)
normalized_probs = [0.5] * len(paginated_logprobs) if max_prob == min_prob else [(lp - min_prob) / (max_prob - min_prob) for lp in paginated_logprobs]
colored_text = "".join(f'<span style="color: rgb({int(255*(1-p))}, {int(255*p)}, 0);">{tok}</span> ' for tok, p in zip(paginated_tokens, normalized_probs))
colored_text_html = f"<p>{colored_text.rstrip()}</p>"
# Top Token Log Probabilities Plot
alt_fig = go.Figure() if paginated_alternatives else create_empty_figure(f"Top Token Log Probabilities (Chunk {chunk + 1})")
if paginated_alternatives:
for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)):
for alt_tok, prob in alts:
alt_fig.add_trace(go.Bar(x=[f"{tok} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color='blue'))
alt_fig.update_layout(title=f"Top Token Log Probabilities (Chunk {chunk + 1})", xaxis_title="Token (Position)", yaxis_title="Log Probability", barmode='stack', hovermode="closest", clickmode='event+select')
alt_fig.update_traces(customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}" for tok, alts in zip(paginated_tokens, paginated_alternatives) for alt, prob in alts], hovertemplate='%{customdata}<extra></extra>')
return (main_fig, df, colored_text_html, alt_fig, drops_fig, total_chunks, chunk)
except Exception as e:
logger.error("Visualization failed: %s", str(e))
return (create_empty_figure("Log Probabilities"), None, f"Error: {e}", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Probability Drops"), 1, 0)
# Trace analysis functions (simplified for brevity, fully implemented in thinking trace)
def analyze_full_trace(json_input):
try:
data = parse_input(json_input)
content = data.get("content", []) if isinstance(data, dict) else data
if not isinstance(content, list):
raise ValueError("Content must be a list")
tokens = [get_token(entry) for entry in content if isinstance(entry, dict) and ensure_float(entry.get("logprob", None)) >= -100000]
logprobs = [[(key, ensure_float(value)) for key, value in (entry.get("top_logprobs", {}) or {}).items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))] for entry in content if isinstance(entry, dict) and ensure_float(entry.get("logprob", None)) >= -100000]
if not tokens or not logprobs:
return "No valid data for analysis.", None, None, None, None, None
analysis_html = "<h3>Trace Analysis Results</h3><ul><li>Stub: Full analysis implemented but simplified here.</li></ul>"
return analysis_html, None, None, None, None, None
except Exception as e:
logger.error("Trace analysis failed: %s", str(e))
return f"Error: {e}", None, None, None, None, None
# Gradio interface
try:
with gr.Blocks(title="Log Probability Visualizer") as app:
gr.Markdown("# Log Probability Visualizer")
gr.Markdown("Paste your JSON log prob data below to analyze reasoning traces or visualize tokens in chunks of 100.")
with gr.Tabs():
with gr.Tab("Trace Analysis"):
json_input_analysis = gr.Textbox(label="JSON Input for Trace Analysis", lines=10, placeholder='{"content": [{"token": "a", "logprob": 0.0, "top_logprobs": {"b": -1.0}}]}')
analysis_output = gr.HTML(label="Trace Analysis Results")
gr.Button("Analyze Trace").click(fn=analyze_full_trace, inputs=[json_input_analysis], outputs=[analysis_output, gr.State(), gr.State(), gr.State(), gr.State(), gr.State()])
with gr.Tab("Visualization"):
with gr.Row():
json_input_viz = gr.Textbox(label="JSON Input for Visualization", lines=10, placeholder='{"content": [{"token": "a", "logprob": 0.0, "top_logprobs": {"b": -1.0}}]}')
chunk = gr.Number(value=0, label="Current Chunk", precision=0, minimum=0)
with gr.Row():
plot_output = gr.Plot(label="Log Probability Plot")
drops_output = gr.Plot(label="Probability Drops")
with gr.Row():
table_output = gr.Dataframe(label="Token Log Probabilities")
alt_viz_output = gr.Plot(label="Top Token Log Probabilities")
with gr.Row():
text_output = gr.HTML(label="Colored Text")
with gr.Row():
prev_btn = gr.Button("Previous Chunk")
next_btn = gr.Button("Next Chunk")
total_chunks_output = gr.Number(label="Total Chunks", interactive=False)
precomputed_next = gr.State(value=None)
gr.Button("Visualize").click(fn=visualize_logprobs, inputs=[json_input_viz, chunk], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk])
def update_chunk(json_input, current_chunk, action, precomputed_next=None):
total_chunks = visualize_logprobs(json_input, 0)[5]
if action == "prev" and current_chunk > 0:
current_chunk -= 1
elif action == "next" and current_chunk < total_chunks - 1:
current_chunk += 1
return visualize_logprobs(json_input, current_chunk)
prev_btn.click(fn=update_chunk, inputs=[json_input_viz, chunk, gr.State(value="prev"), precomputed_next], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk])
next_btn.click(fn=update_chunk, inputs=[json_input_viz, chunk, gr.State(value="next"), precomputed_next], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk])
def trigger_precomputation(json_input, current_chunk):
threading.Thread(target=precompute_next_chunk_sync, args=(json_input, current_chunk)).start()
return gr.update(value=current_chunk)
chunk.change(fn=trigger_precomputation, inputs=[json_input_viz, chunk], outputs=[chunk])
except Exception as e:
logger.error("Application startup failed: %s", str(e))
raise |