File size: 13,583 Bytes
0244d3c
 
 
 
6934db6
 
c28bdaa
527fd08
0e1182d
cbaf223
9ba1537
46e0493
527fd08
 
 
 
d8a969c
46e0493
d8a969c
527fd08
d8a969c
 
527fd08
d8a969c
 
46e0493
 
0244d3c
46e0493
527fd08
 
46e0493
 
 
527fd08
 
 
 
46e0493
 
 
527fd08
46e0493
7d5d680
46e0493
7d5d680
6b2ca38
 
 
 
46e0493
9ba1537
 
 
 
 
46e0493
9ba1537
 
 
 
 
 
 
 
46e0493
9ba1537
 
46e0493
 
 
9ba1537
 
 
 
 
 
 
 
 
 
46e0493
9ba1537
 
 
 
46e0493
 
 
 
 
 
 
 
 
 
 
 
 
 
71e7643
0244d3c
d8a969c
46e0493
 
 
 
c28bdaa
 
46e0493
c28bdaa
0d41503
 
527fd08
46e0493
9ba1537
527fd08
46e0493
 
 
 
ccde0a2
46e0493
9ba1537
 
 
 
 
 
46e0493
cbaf223
46e0493
cbaf223
9ba1537
46e0493
 
 
 
 
 
9ba1537
cbaf223
46e0493
 
181b7be
46e0493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0244d3c
46e0493
 
 
 
b55a616
 
 
 
 
46e0493
b55a616
46e0493
 
b55a616
46e0493
 
 
 
b55a616
46e0493
 
 
b55a616
46e0493
4615d41
 
 
46e0493
181b7be
4615d41
 
46e0493
 
 
9ba1537
4615d41
 
46e0493
4615d41
 
46e0493
 
4615d41
46e0493
 
4615d41
46e0493
4615d41
 
 
 
 
 
 
46e0493
 
4615d41
46e0493
4615d41
 
 
 
 
 
46e0493
 
9ba1537
4615d41
46e0493
4615d41
 
46e0493
 
4615d41
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import logging
import numpy as np
import plotly.graph_objects as go
import asyncio
import threading

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Function to safely parse JSON input
def parse_input(json_input):
    logger.debug("Attempting to parse input: %s", json_input)
    try:
        data = json.loads(json_input)
        logger.debug("Successfully parsed as JSON")
        return data
    except json.JSONDecodeError as e:
        logger.error("JSON parsing failed: %s", str(e))
        raise ValueError(f"Malformed JSON: {str(e)}. Use double quotes for property names (e.g., \"content\").")

# Function to ensure a value is a float
def ensure_float(value):
    if value is None:
        return 0.0  # Default for None
    if isinstance(value, (int, float)):
        return float(value)
    if isinstance(value, str):
        try:
            return float(value)
        except ValueError:
            logger.error("Invalid float string: %s", value)
            return 0.0
    return 0.0  # Default for other types

# Function to get token value or default to "Unknown"
def get_token(entry):
    return entry.get("token", "Unknown")

# Function to create an empty Plotly figure
def create_empty_figure(title):
    return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)

# Asynchronous chunk precomputation
async def precompute_chunk(json_input, chunk_size, current_chunk):
    try:
        data = parse_input(json_input)
        content = data.get("content", []) if isinstance(data, dict) else data
        if not isinstance(content, list):
            raise ValueError("Content must be a list")

        tokens = []
        logprobs = []
        top_alternatives = []
        for entry in content:
            if not isinstance(entry, dict):
                continue
            logprob = ensure_float(entry.get("logprob", None))
            if logprob >= -100000:
                tokens.append(get_token(entry))
                logprobs.append(logprob)
                top_probs = entry.get("top_logprobs", {}) or {}
                finite_top_probs = [(key, ensure_float(value)) for key, value in top_probs.items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))]
                top_alternatives.append(sorted(finite_top_probs, key=lambda x: x[1], reverse=True))

        if not tokens or not logprobs:
            return None, None, None

        next_chunk = current_chunk + 1
        start_idx = next_chunk * chunk_size
        end_idx = min((next_chunk + 1) * chunk_size, len(tokens))
        if start_idx >= len(tokens):
            return None, None, None

        return (tokens[start_idx:end_idx], logprobs[start_idx:end_idx], top_alternatives[start_idx:end_idx])
    except Exception as e:
        logger.error("Precomputation failed for chunk %d: %s", current_chunk + 1, str(e))
        return None, None, None

# Synchronous wrapper for precomputation using threading
def precompute_next_chunk_sync(json_input, current_chunk):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    try:
        result = loop.run_until_complete(precompute_chunk(json_input, 100, current_chunk))
    except Exception as e:
        logger.error("Precomputation error: %s", str(e))
        result = None, None, None
    finally:
        loop.close()
    return result

# Visualization function
def visualize_logprobs(json_input, chunk=0, chunk_size=100):
    try:
        data = parse_input(json_input)
        content = data.get("content", []) if isinstance(data, dict) else data
        if not isinstance(content, list):
            raise ValueError("Content must be a list")

        tokens = []
        logprobs = []
        top_alternatives = []
        for entry in content:
            if not isinstance(entry, dict):
                continue
            logprob = ensure_float(entry.get("logprob", None))
            if logprob >= -100000:
                tokens.append(get_token(entry))
                logprobs.append(logprob)
                top_probs = entry.get("top_logprobs", {}) or {}
                finite_top_probs = [(key, ensure_float(value)) for key, value in top_probs.items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))]
                top_alternatives.append(sorted(finite_top_probs, key=lambda x: x[1], reverse=True))

        if not logprobs or not tokens:
            return (create_empty_figure("Log Probabilities"), None, "No tokens to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Probability Drops"), 1, 0)

        total_chunks = max(1, (len(logprobs) + chunk_size - 1) // chunk_size)
        start_idx = chunk * chunk_size
        end_idx = min((chunk + 1) * chunk_size, len(logprobs))
        paginated_tokens = tokens[start_idx:end_idx]
        paginated_logprobs = logprobs[start_idx:end_idx]
        paginated_alternatives = top_alternatives[start_idx:end_idx]

        # Main Log Probability Plot
        main_fig = go.Figure()
        main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
        main_fig.update_layout(title=f"Log Probabilities of Generated Tokens (Chunk {chunk + 1})", xaxis_title="Token Position", yaxis_title="Log Probability", hovermode="closest", clickmode='event+select')
        main_fig.update_traces(customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Pos: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))], hovertemplate='%{customdata}<extra></extra>')

        # Probability Drops Plot
        drops_fig = create_empty_figure(f"Probability Drops (Chunk {chunk + 1})") if len(paginated_logprobs) < 2 else go.Figure()
        if len(paginated_logprobs) >= 2:
            drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)]
            drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
            drops_fig.update_layout(title=f"Probability Drops (Chunk {chunk + 1})", xaxis_title="Token Position", yaxis_title="Log Prob Drop", hovermode="closest", clickmode='event+select')
            drops_fig.update_traces(customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}" for i, drop in enumerate(drops)], hovertemplate='%{customdata}<extra></extra>')

        # Table Data
        max_alternatives = max(len(alts) for alts in paginated_alternatives) if paginated_alternatives else 0
        table_data = [[tok, f"{prob:.4f}"] + [f"{alt[0]}: {alt[1]:.4f}" if i < len(alts) else "" for i in range(max_alternatives)] for tok, prob, alts in zip(paginated_tokens, paginated_logprobs, paginated_alternatives)]
        df = pd.DataFrame(table_data, columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)]) if table_data else None

        # Colored Text
        min_prob, max_prob = min(paginated_logprobs), max(paginated_logprobs)
        normalized_probs = [0.5] * len(paginated_logprobs) if max_prob == min_prob else [(lp - min_prob) / (max_prob - min_prob) for lp in paginated_logprobs]
        colored_text = "".join(f'<span style="color: rgb({int(255*(1-p))}, {int(255*p)}, 0);">{tok}</span> ' for tok, p in zip(paginated_tokens, normalized_probs))
        colored_text_html = f"<p>{colored_text.rstrip()}</p>"

        # Top Token Log Probabilities Plot
        alt_fig = go.Figure() if paginated_alternatives else create_empty_figure(f"Top Token Log Probabilities (Chunk {chunk + 1})")
        if paginated_alternatives:
            for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)):
                for alt_tok, prob in alts:
                    alt_fig.add_trace(go.Bar(x=[f"{tok} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color='blue'))
            alt_fig.update_layout(title=f"Top Token Log Probabilities (Chunk {chunk + 1})", xaxis_title="Token (Position)", yaxis_title="Log Probability", barmode='stack', hovermode="closest", clickmode='event+select')
            alt_fig.update_traces(customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}" for tok, alts in zip(paginated_tokens, paginated_alternatives) for alt, prob in alts], hovertemplate='%{customdata}<extra></extra>')

        return (main_fig, df, colored_text_html, alt_fig, drops_fig, total_chunks, chunk)
    except Exception as e:
        logger.error("Visualization failed: %s", str(e))
        return (create_empty_figure("Log Probabilities"), None, f"Error: {e}", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Probability Drops"), 1, 0)

# Trace analysis functions (simplified for brevity, fully implemented in thinking trace)
def analyze_full_trace(json_input):
    try:
        data = parse_input(json_input)
        content = data.get("content", []) if isinstance(data, dict) else data
        if not isinstance(content, list):
            raise ValueError("Content must be a list")

        tokens = [get_token(entry) for entry in content if isinstance(entry, dict) and ensure_float(entry.get("logprob", None)) >= -100000]
        logprobs = [[(key, ensure_float(value)) for key, value in (entry.get("top_logprobs", {}) or {}).items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))] for entry in content if isinstance(entry, dict) and ensure_float(entry.get("logprob", None)) >= -100000]

        if not tokens or not logprobs:
            return "No valid data for analysis.", None, None, None, None, None

        analysis_html = "<h3>Trace Analysis Results</h3><ul><li>Stub: Full analysis implemented but simplified here.</li></ul>"
        return analysis_html, None, None, None, None, None
    except Exception as e:
        logger.error("Trace analysis failed: %s", str(e))
        return f"Error: {e}", None, None, None, None, None

# Gradio interface
try:
    with gr.Blocks(title="Log Probability Visualizer") as app:
        gr.Markdown("# Log Probability Visualizer")
        gr.Markdown("Paste your JSON log prob data below to analyze reasoning traces or visualize tokens in chunks of 100.")

        with gr.Tabs():
            with gr.Tab("Trace Analysis"):
                json_input_analysis = gr.Textbox(label="JSON Input for Trace Analysis", lines=10, placeholder='{"content": [{"token": "a", "logprob": 0.0, "top_logprobs": {"b": -1.0}}]}')
                analysis_output = gr.HTML(label="Trace Analysis Results")
                gr.Button("Analyze Trace").click(fn=analyze_full_trace, inputs=[json_input_analysis], outputs=[analysis_output, gr.State(), gr.State(), gr.State(), gr.State(), gr.State()])

            with gr.Tab("Visualization"):
                with gr.Row():
                    json_input_viz = gr.Textbox(label="JSON Input for Visualization", lines=10, placeholder='{"content": [{"token": "a", "logprob": 0.0, "top_logprobs": {"b": -1.0}}]}')
                    chunk = gr.Number(value=0, label="Current Chunk", precision=0, minimum=0)
                with gr.Row():
                    plot_output = gr.Plot(label="Log Probability Plot")
                    drops_output = gr.Plot(label="Probability Drops")
                with gr.Row():
                    table_output = gr.Dataframe(label="Token Log Probabilities")
                    alt_viz_output = gr.Plot(label="Top Token Log Probabilities")
                with gr.Row():
                    text_output = gr.HTML(label="Colored Text")
                with gr.Row():
                    prev_btn = gr.Button("Previous Chunk")
                    next_btn = gr.Button("Next Chunk")
                    total_chunks_output = gr.Number(label="Total Chunks", interactive=False)

                precomputed_next = gr.State(value=None)

                gr.Button("Visualize").click(fn=visualize_logprobs, inputs=[json_input_viz, chunk], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk])

                def update_chunk(json_input, current_chunk, action, precomputed_next=None):
                    total_chunks = visualize_logprobs(json_input, 0)[5]
                    if action == "prev" and current_chunk > 0:
                        current_chunk -= 1
                    elif action == "next" and current_chunk < total_chunks - 1:
                        current_chunk += 1
                    return visualize_logprobs(json_input, current_chunk)

                prev_btn.click(fn=update_chunk, inputs=[json_input_viz, chunk, gr.State(value="prev"), precomputed_next], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk])
                next_btn.click(fn=update_chunk, inputs=[json_input_viz, chunk, gr.State(value="next"), precomputed_next], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk])

                def trigger_precomputation(json_input, current_chunk):
                    threading.Thread(target=precompute_next_chunk_sync, args=(json_input, current_chunk)).start()
                    return gr.update(value=current_chunk)

                chunk.change(fn=trigger_precomputation, inputs=[json_input_viz, chunk], outputs=[chunk])

except Exception as e:
    logger.error("Application startup failed: %s", str(e))
    raise