codelion commited on
Commit
b55a616
·
verified ·
1 Parent(s): 71e7643

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +294 -81
app.py CHANGED
@@ -208,13 +208,13 @@ def visualize_logprobs(json_input, chunk=0, chunk_size=100):
208
  logger.debug("top_logprobs is None for token: %s, using empty dict", token)
209
  top_logprobs = {} # Default to empty dict for None
210
  # Ensure all values in top_logprobs are floats
211
- finite_top_logprobs = []
212
  for key, value in top_logprobs.items():
213
  float_value = ensure_float(value)
214
  if float_value is not None and math.isfinite(float_value):
215
- finite_top_logprobs.append((key, float_value))
216
  # Sort by log probability (descending)
217
- sorted_probs = sorted(finite_top_logprobs, key=lambda x: x[1], reverse=True)
218
  row = [token, f"{logprob:.4f}"]
219
  for alt_token, alt_logprob in sorted_probs[:max_alternatives]: # Use max number of alternatives
220
  row.append(f"{alt_token}: {alt_logprob:.4f}")
@@ -281,93 +281,306 @@ def visualize_logprobs(json_input, chunk=0, chunk_size=100):
281
  logger.error("Visualization failed: %s (Input: %s)", str(e), json_input[:100] + "..." if len(json_input) > 100 else json_input)
282
  return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0)
283
 
284
- # Gradio interface with chunked visualization and proactive precomputation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
  with gr.Blocks(title="Log Probability Visualizer") as app:
286
  gr.Markdown("# Log Probability Visualizer")
287
  gr.Markdown(
288
- "Paste your JSON log prob data below to visualize tokens in chunks of 100. Fixed filter ≥ -100000, dynamic number of top_logprobs, handles missing or null fields. Next chunk is precomputed proactively."
289
  )
290
 
291
- with gr.Row():
292
- json_input = gr.Textbox(
293
- label="JSON Input",
294
- lines=10,
295
- placeholder="Paste your JSON (e.g., {\"content\": [{\"bytes\": [44], \"logprob\": 0.0, \"token\": \",\", \"top_logprobs\": {\" so\": -13.8046875, \".\": -13.8046875, \",\": -13.640625}}]}).",
296
- )
297
- chunk = gr.Number(value=0, label="Current Chunk", precision=0, minimum=0)
298
-
299
- with gr.Row():
300
- plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
301
- drops_output = gr.Plot(label="Probability Drops (Click for Details)")
302
-
303
- with gr.Row():
304
- table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
305
- alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)")
306
-
307
- with gr.Row():
308
- text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
309
-
310
- with gr.Row():
311
- prev_btn = gr.Button("Previous Chunk")
312
- next_btn = gr.Button("Next Chunk")
313
- total_chunks_output = gr.Number(label="Total Chunks", interactive=False)
314
-
315
- # Precomputed next chunk state (hidden)
316
- precomputed_next = gr.State(value=None)
317
 
318
- btn = gr.Button("Visualize")
319
- btn.click(
320
- fn=visualize_logprobs,
321
- inputs=[json_input, chunk],
322
- outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk],
323
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324
 
325
- # Precompute next chunk proactively when on current chunk
326
- async def precompute_next_chunk(json_input, current_chunk, precomputed_next):
327
- if precomputed_next is not None:
328
- return precomputed_next # Use cached precomputed chunk if available
329
- next_tokens, next_logprobs, next_alternatives = await precompute_chunk(json_input, 100, current_chunk)
330
- if next_tokens is None or next_logprobs is None or next_alternatives is None:
331
- return None
332
- return (next_tokens, next_logprobs, next_alternatives)
333
-
334
- # Update chunk on button clicks
335
- def update_chunk(json_input, current_chunk, action, precomputed_next=None):
336
- total_chunks = visualize_logprobs(json_input, 0)[5] # Get total chunks
337
- if action == "prev" and current_chunk > 0:
338
- current_chunk -= 1
339
- elif action == "next" and current_chunk < total_chunks - 1:
340
- current_chunk += 1
341
- # If precomputed next chunk exists, use it; otherwise, compute it
342
- if precomputed_next:
343
- next_tokens, next_logprobs, next_alternatives = precomputed_next
344
- if next_tokens and next_logprobs and next_alternatives:
345
- logger.debug("Using precomputed next chunk for chunk %d", current_chunk)
346
- return visualize_logprobs(json_input, current_chunk)
347
- return visualize_logprobs(json_input, current_chunk)
348
-
349
- prev_btn.click(
350
- fn=update_chunk,
351
- inputs=[json_input, chunk, gr.State(value="prev"), precomputed_next],
352
- outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk],
353
- )
354
 
355
- next_btn.click(
356
- fn=update_chunk,
357
- inputs=[json_input, chunk, gr.State(value="next"), precomputed_next],
358
- outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk],
359
- )
360
 
361
- # Trigger precomputation when chunk changes (via button clicks or initial load)
362
- def trigger_precomputation(json_input, current_chunk):
363
- asyncio.create_task(precompute_next_chunk(json_input, current_chunk, None))
364
- return gr.update(value=current_chunk)
365
 
366
- # Use a dummy event to trigger precomputation on chunk change (simplified for Gradio)
367
- chunk.change(
368
- fn=trigger_precomputation,
369
- inputs=[json_input, chunk],
370
- outputs=[chunk],
371
- )
372
 
373
  app.launch()
 
208
  logger.debug("top_logprobs is None for token: %s, using empty dict", token)
209
  top_logprobs = {} # Default to empty dict for None
210
  # Ensure all values in top_logprobs are floats
211
+ finite_top_probs = []
212
  for key, value in top_logprobs.items():
213
  float_value = ensure_float(value)
214
  if float_value is not None and math.isfinite(float_value):
215
+ finite_top_probs.append((key, float_value))
216
  # Sort by log probability (descending)
217
+ sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True)
218
  row = [token, f"{logprob:.4f}"]
219
  for alt_token, alt_logprob in sorted_probs[:max_alternatives]: # Use max number of alternatives
220
  row.append(f"{alt_token}: {alt_logprob:.4f}")
 
281
  logger.error("Visualization failed: %s (Input: %s)", str(e), json_input[:100] + "..." if len(json_input) > 100 else json_input)
282
  return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0)
283
 
284
+ # Analysis functions for detecting correct vs. incorrect traces
285
+ def analyze_confidence_signature(logprobs, tokens):
286
+ if not logprobs or not tokens:
287
+ return "No data for confidence signature analysis.", None
288
+ # Track moving average of top token probability
289
+ top_probs = [lps[0][1] if lps else -float('inf') for lps in logprobs] # Extract top probability, handle empty
290
+ moving_avg = np.convolve(
291
+ top_probs,
292
+ np.ones(20) / 20, # 20-token window
293
+ mode='valid'
294
+ )
295
+
296
+ # Detect significant drops (potential error points)
297
+ drops = np.where(np.diff(moving_avg) < -0.15)[0]
298
+ if not drops.size:
299
+ return "No significant confidence drops detected.", None
300
+ drop_positions = [(i, tokens[i + 19] if i + 19 < len(tokens) else "End of trace") for i in drops] # Adjust for convolution window
301
+ return "Significant confidence drops detected at positions:", drop_positions
302
+
303
+ def detect_interpretation_pivots(logprobs, tokens):
304
+ if not logprobs or not tokens:
305
+ return "No data for interpretation pivot detection.", None
306
+ pivots = []
307
+ reconsideration_tokens = ["wait", "but", "actually", "however", "hmm"]
308
+
309
+ for i, (token, lps) in enumerate(zip(tokens, logprobs)):
310
+ # Check if reconsideration tokens have unusually high probability
311
+ for rt in reconsideration_tokens:
312
+ for t, p in lps:
313
+ if t.lower() == rt and p > -2.5: # High probability
314
+ # Look back to find what's being reconsidered
315
+ context = tokens[max(0, i-50):i]
316
+ pivots.append((i, rt, context))
317
+
318
+ if not pivots:
319
+ return "No interpretation pivots detected.", None
320
+ return "Interpretation pivots detected:", pivots
321
+
322
+ def calculate_decision_entropy(logprobs):
323
+ if not logprobs:
324
+ return "No data for entropy spike detection.", None
325
+ # Calculate entropy at each token position
326
+ entropies = []
327
+ for lps in logprobs:
328
+ if not lps:
329
+ entropies.append(0.0)
330
+ continue
331
+ # Calculate entropy: -sum(p * log(p)) for each probability
332
+ probs = [math.exp(p) for _, p in lps] # Convert log probs to probabilities
333
+ if not probs or sum(probs) == 0:
334
+ entropies.append(0.0)
335
+ continue
336
+ entropy = -sum(p * math.log(p) for p in probs if p > 0)
337
+ entropies.append(entropy)
338
+
339
+ # Detect significant entropy spikes
340
+ baseline = np.percentile(entropies, 75) if entropies else 0.0
341
+ spikes = [i for i, e in enumerate(entropies) if e > baseline * 1.5 if baseline > 0]
342
+
343
+ if not spikes:
344
+ return "No entropy spikes detected at decision points.", None
345
+ return "Entropy spikes detected at positions:", spikes
346
+
347
+ def analyze_conclusion_competition(logprobs, tokens):
348
+ if not logprobs or not tokens:
349
+ return "No data for conclusion competition analysis.", None
350
+ # Find tokens related to conclusion
351
+ conclusion_indices = [i for i, t in enumerate(tokens)
352
+ if any(marker in t.lower() for marker in
353
+ ["therefore", "thus", "boxed", "answer"])]
354
+
355
+ if not conclusion_indices:
356
+ return "No conclusion markers found in trace.", None
357
+
358
+ # Analyze probability gap between top and second choices near conclusion
359
+ gaps = []
360
+ conclusion_idx = conclusion_indices[-1]
361
+ end_range = min(conclusion_idx + 50, len(logprobs))
362
+ for idx in range(conclusion_idx, end_range):
363
+ if idx < len(logprobs) and len(logprobs[idx]) >= 2:
364
+ top_prob = logprobs[idx][0][1] if logprobs[idx] else -float('inf')
365
+ second_prob = logprobs[idx][1][1] if len(logprobs[idx]) > 1 else -float('inf')
366
+ gap = top_prob - second_prob if top_prob != -float('inf') and second_prob != -float('inf') else 0.0
367
+ gaps.append(gap)
368
+
369
+ if not gaps:
370
+ return "No conclusion competition data available.", None
371
+ mean_gap = np.mean(gaps)
372
+ return f"Mean probability gap at conclusion: {mean_gap:.4f} (higher indicates more confident conclusion)", None
373
+
374
+ def analyze_verification_signals(logprobs, tokens):
375
+ if not logprobs or not tokens:
376
+ return "No data for verification signal analysis.", None
377
+ verification_terms = ["verify", "check", "confirm", "ensure", "double"]
378
+ verification_probs = []
379
+
380
+ for lps in logprobs:
381
+ # Look for verification terms in top-k tokens
382
+ max_v_prob = -float('inf')
383
+ for token, prob in lps:
384
+ if any(v_term in token.lower() for v_term in verification_terms):
385
+ max_v_prob = max(max_v_prob, prob)
386
+
387
+ if max_v_prob > -float('inf'):
388
+ verification_probs.append(max_v_prob)
389
+
390
+ if not verification_probs:
391
+ return "No verification signals detected.", None
392
+ count, mean_prob = len(verification_probs), np.mean(verification_probs)
393
+ return f"Verification signals found: {count} instances, mean probability: {mean_prob:.4f}", None
394
+
395
+ def detect_semantic_inversions(logprobs, tokens):
396
+ if not logprobs or not tokens:
397
+ return "No data for semantic inversion detection.", None
398
+ inversion_pairs = [
399
+ ("more", "less"), ("larger", "smaller"),
400
+ ("winning", "losing"), ("increase", "decrease"),
401
+ ("greater", "lesser"), ("positive", "negative")
402
+ ]
403
+
404
+ inversions = []
405
+ for i, (token, lps) in enumerate(zip(tokens, logprobs)):
406
+ for pos, neg in inversion_pairs:
407
+ if token.lower() == pos:
408
+ # Check if negative term has high probability
409
+ for t, p in lps:
410
+ if t.lower() == neg and p > -3.0: # High competitor
411
+ inversions.append((i, pos, neg, p))
412
+ elif token.lower() == neg:
413
+ # Check if positive term has high probability
414
+ for t, p in lps:
415
+ if t.lower() == pos and p > -3.0: # High competitor
416
+ inversions.append((i, neg, pos, p))
417
+
418
+ if not inversions:
419
+ return "No semantic inversions detected.", None
420
+ return "Semantic inversions detected:", inversions
421
+
422
+ # Function to perform full trace analysis
423
+ def analyze_full_trace(json_input):
424
+ try:
425
+ data = parse_input(json_input)
426
+ content = data.get("content", []) if isinstance(data, dict) else data
427
+ if not isinstance(content, list):
428
+ raise ValueError("Content must be a list of entries")
429
+
430
+ tokens = []
431
+ logprobs = []
432
+ for entry in content:
433
+ if not isinstance(entry, dict):
434
+ logger.warning("Skipping non-dictionary entry: %s", entry)
435
+ continue
436
+ logprob = ensure_float(entry.get("logprob", None))
437
+ if logprob >= -100000: # Include all entries with default 0.0
438
+ tokens.append(get_token(entry))
439
+ top_probs = entry.get("top_logprobs", {})
440
+ if top_probs is None:
441
+ top_probs = {}
442
+ finite_top_probs = []
443
+ for key, value in top_probs.items():
444
+ float_value = ensure_float(value)
445
+ if float_value is not None and math.isfinite(float_value):
446
+ finite_top_probs.append((key, float_value))
447
+ logprobs.append(finite_top_probs)
448
+
449
+ if not logprobs or not tokens:
450
+ return "No valid data for trace analysis.", None, None, None, None, None
451
+
452
+ # Perform all analyses
453
+ confidence_result, confidence_data = analyze_confidence_signature(logprobs, tokens)
454
+ pivot_result, pivot_data = detect_interpretation_pivots(logprobs, tokens)
455
+ entropy_result, entropy_data = calculate_decision_entropy(logprobs)
456
+ conclusion_result, conclusion_data = analyze_conclusion_competition(logprobs, tokens)
457
+ verification_result, verification_data = analyze_verification_signals(logprobs, tokens)
458
+ inversion_result, inversion_data = detect_semantic_inversions(logprobs, tokens)
459
+
460
+ # Format results for display
461
+ analysis_html = f"""
462
+ <h3>Trace Analysis Results</h3>
463
+ <ul>
464
+ <li><strong>Confidence Signature:</strong> {confidence_result}</li>
465
+ {f"<ul><li>Positions: {', '.join(str(pos) for pos, tok in confidence_data)}</li></ul>" if confidence_data else ""}
466
+ <li><strong>Interpretation Pivots:</strong> {pivot_result}</li>
467
+ {f"<ul><li>Positions: {', '.join(str(pos) for pos, _, _ in pivot_data)}</li></ul>" if pivot_data else ""}
468
+ <li><strong>Decision Entropy Spikes:</strong> {entropy_result}</li>
469
+ {f"<ul><li>Positions: {', '.join(str(pos) for pos in entropy_data)}</li></ul>" if entropy_data else ""}
470
+ <li><strong>Conclusion Competition:</strong> {conclusion_result}</li>
471
+ <li><strong>Verification Signals:</strong> {verification_result}</li>
472
+ <li><strong>Semantic Inversions:</strong> {inversion_result}</li>
473
+ {f"<ul><li>Positions: {', '.join(str(pos) for pos, _, _, _ in inversion_data)}</li></ul>" if inversion_data else ""}
474
+ </ul>
475
+ """
476
+ return analysis_html, None, None, None, None, None
477
+
478
+ # Gradio interface with two tabs: Trace Analysis and Visualization
479
  with gr.Blocks(title="Log Probability Visualizer") as app:
480
  gr.Markdown("# Log Probability Visualizer")
481
  gr.Markdown(
482
+ "Paste your JSON log prob data below to analyze reasoning traces and visualize tokens in chunks of 100. Fixed filter ≥ -100000, dynamic number of top_logprobs, handles missing or null fields. Next chunk is precomputed proactively."
483
  )
484
 
485
+ with gr.Tabs():
486
+ with gr.Tab("Trace Analysis"):
487
+ with gr.Row():
488
+ json_input_analysis = gr.Textbox(
489
+ label="JSON Input for Trace Analysis",
490
+ lines=10,
491
+ placeholder="Paste your JSON (e.g., {\"content\": [{\"bytes\": [44], \"logprob\": 0.0, \"token\": \",\", \"top_logprobs\": {\" so\": -13.8046875, \".\": -13.8046875, \",\": -13.640625}}]}).",
492
+ )
493
+ with gr.Row():
494
+ analysis_output = gr.HTML(label="Trace Analysis Results")
495
+
496
+ btn_analyze = gr.Button("Analyze Trace")
497
+ btn_analyze.click(
498
+ fn=analyze_full_trace,
499
+ inputs=[json_input_analysis],
500
+ outputs=[analysis_output, gr.State(), gr.State(), gr.State(), gr.State(), gr.State()],
501
+ )
 
 
 
 
 
 
 
 
 
502
 
503
+ with gr.Tab("Visualization"):
504
+ with gr.Row():
505
+ json_input_viz = gr.Textbox(
506
+ label="JSON Input for Visualization",
507
+ lines=10,
508
+ placeholder="Paste your JSON (e.g., {\"content\": [{\"bytes\": [44], \"logprob\": 0.0, \"token\": \",\", \"top_logprobs\": {\" so\": -13.8046875, \".\": -13.8046875, \",\": -13.640625}}]}).",
509
+ )
510
+ chunk = gr.Number(value=0, label="Current Chunk", precision=0, minimum=0)
511
+
512
+ with gr.Row():
513
+ plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
514
+ drops_output = gr.Plot(label="Probability Drops (Click for Details)")
515
+
516
+ with gr.Row():
517
+ table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
518
+ alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)")
519
+
520
+ with gr.Row():
521
+ text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
522
+
523
+ with gr.Row():
524
+ prev_btn = gr.Button("Previous Chunk")
525
+ next_btn = gr.Button("Next Chunk")
526
+ total_chunks_output = gr.Number(label="Total Chunks", interactive=False)
527
+
528
+ # Precomputed next chunk state (hidden)
529
+ precomputed_next = gr.State(value=None)
530
+
531
+ btn_viz = gr.Button("Visualize")
532
+ btn_viz.click(
533
+ fn=visualize_logprobs,
534
+ inputs=[json_input_viz, chunk],
535
+ outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk],
536
+ )
537
 
538
+ # Precompute next chunk proactively when on current chunk
539
+ async def precompute_next_chunk(json_input, current_chunk, precomputed_next):
540
+ if precomputed_next is not None:
541
+ return precomputed_next # Use cached precomputed chunk if available
542
+ next_tokens, next_logprobs, next_alternatives = await precompute_chunk(json_input, 100, current_chunk)
543
+ if next_tokens is None or next_logprobs is None or next_alternatives is None:
544
+ return None
545
+ return (next_tokens, next_logprobs, next_alternatives)
546
+
547
+ # Update chunk on button clicks
548
+ def update_chunk(json_input, current_chunk, action, precomputed_next=None):
549
+ total_chunks = visualize_logprobs(json_input, 0)[5] # Get total chunks
550
+ if action == "prev" and current_chunk > 0:
551
+ current_chunk -= 1
552
+ elif action == "next" and current_chunk < total_chunks - 1:
553
+ current_chunk += 1
554
+ # If precomputed next chunk exists, use it; otherwise, compute it
555
+ if precomputed_next:
556
+ next_tokens, next_logprobs, next_alternatives = precomputed_next
557
+ if next_tokens and next_logprobs and next_alternatives:
558
+ logger.debug("Using precomputed next chunk for chunk %d", current_chunk)
559
+ return visualize_logprobs(json_input, current_chunk)
560
+ return visualize_logprobs(json_input, current_chunk)
561
+
562
+ prev_btn.click(
563
+ fn=update_chunk,
564
+ inputs=[json_input_viz, chunk, gr.State(value="prev"), precomputed_next],
565
+ outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk],
566
+ )
567
 
568
+ next_btn.click(
569
+ fn=update_chunk,
570
+ inputs=[json_input_viz, chunk, gr.State(value="next"), precomputed_next],
571
+ outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk],
572
+ )
573
 
574
+ # Trigger precomputation when chunk changes (via button clicks or initial load)
575
+ def trigger_precomputation(json_input, current_chunk):
576
+ asyncio.create_task(precompute_next_chunk(json_input, current_chunk, None))
577
+ return gr.update(value=current_chunk)
578
 
579
+ # Use a dummy event to trigger precomputation on chunk change (simplified for Gradio)
580
+ chunk.change(
581
+ fn=trigger_precomputation,
582
+ inputs=[json_input_viz, chunk],
583
+ outputs=[chunk],
584
+ )
585
 
586
  app.launch()